Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/60855
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLira, Jorge Herbert Soares de-
dc.contributor.authorMelo, Marcelo Ferreira de-
dc.date.accessioned2021-10-05T10:43:31Z-
dc.date.available2021-10-05T10:43:31Z-
dc.date.issued2009-
dc.identifier.citationMELO, Marcelo Ferreira de. Funcionais paramétricos elípticos em variedades riemannianas. 2009. 110 f. Tese (Doutorado em Matemática)-Centro de Ciências, Programa de Pós-Graduação em Matemática, Universidade Federal do Ceará, Fortaleza, 2009.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/60855-
dc.description.abstractIt is stated that critical points of a parametric elliptic functional in a Riemannian manifold are hypersurfaces with prescrebed anisotropic mean curvature. We prove that the anisotropic Gauss map of surfaces immersed in Euclidean space with constant anisotropic mean curvature is a harmonic map. In the case of rotatioally invariat functionals in some homogeneous three-dimensional ambients, we present a abridged version of a existence result for constant anisotropic mean curvature surfaces as cylinders, spheres, tori and annuli corresponding to the anisotropic analogs of onduloids and nodoids. In the Euclidean case M¯ = R3, examples of stable critical points are provided by theWulff shapes associated to functional F. Paralleling the case of constant curvature mean spheres, a characterization of Wulff shapes is provided, which answers affirmatively a question posed by M. Koiso and B. Parmer in [13].pt_BR
dc.language.isopt_BRpt_BR
dc.subjectGeometria diferencialpt_BR
dc.titleFuncionais paramétricos elípticos em variedades riemannianaspt_BR
dc.typeTesept_BR
dc.description.abstract-ptbrNeste trabalho, consideramos funcionais parametricos elípticos como generalizações naturais para o clássico funcional área. Calculamos a primeira variação de tais funcionais e, a partir da equação de Euler-Lagrange, definimos a curvatura média anisotrópica de uma hipersuperfície imersa em uma variedade riemanniana como generalização natural da curvatura media usual. Em seguida, estabelecemos a f ´ fórmula da segunda variação e classificamos as hipersuperfícies rotacionalmente simétricas que possuem curvatura média ´ anisotrópica constante. A fim de compreender a estabilidade dos exemplos rotacionais, deduzimos a primeira e a segunda formulas de Minkowski. Além disso, no contexto anisotrópico, apresentamos as equações fundamentais de Weingarten, Codazzi e Gauss e, por fim, estudamos a harmonicidade da aplicação de Gauss.pt_BR
dc.title.enElliptical parametric functionals on riemannian manifoldspt_BR
Aparece nas coleções:DMAT - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2009_tese_mfmelo.pdf527,48 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.