Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/59823
Type: | Tese |
Title: | Um framework orientado a contexto e algoritmos de decisão para offloading computacional em computação de borda veicular |
Title in English: | A context-oriented framework and decision algorithms for computation offloading in vehicular edge computing |
Authors: | Souza, Alisson Barbosa de |
Advisor: | Souza, José Neuman de |
Co-advisor: | Rêgo, Paulo Antonio Leal |
Keywords: | Computation offloading;Vehicular edge computing;Contextual information;Artifical bee colony;Vehicular networks |
Issue Date: | 2021 |
Citation: | SOUZA, Alisson Barbosa de. A context-oriented framework and decision algorithms for computation offloading in vehicular edge computing. 2021. 136 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2021. |
Abstract in Brazilian Portuguese: | Veículos autônomos e aplicações veiculares complexas têm se tornado cada vez mais populares e requerem massivos recursos computacionais. Apesar de os veículos estarem se tornando mais conectados e inteligentes, eles ainda não possuem poder computacional suficiente para atender a essas demandas de modo satisfatório. Uma opção para lidar com esse desafio é permitir que recursos computacionais de veículos vizinhos e servidores de borda acoplados às estações base sejam utilizados através de sistemas de computação de borda veicular. Então, os veículos podem enviar tarefas, ou partes menores de aplicações, para esses servidores remotos através da técnica de offloading computacional. Nessa técnica, tais servidores executam as tarefas e retornam o resultado do processamento para o veículo inicial. Embora essa técnica vise diminuir o tempo de execução de aplicações, realizá-la em cenários veiculares é desafiador devido ao rápido movimento dos nós da rede e às frequentes desconexões. Em tais casos, informações contextuais que caracterizam a situação de dispositivos de redes e veículos ajudam a lidar com esses desafios por auxiliar processos de decisão de offloading a entregar melhores resultados. Assim, nós propomos um framework orientado a contexto e algoritmos de atribuição de tarefas para reduzir o tempo de execução de aplicações veiculares de forma confiável através de offloading computacional em sistemas de computação de borda veicular. O framework gerencia todas as etapas do processo de offloading e provê um mecanismo de recuperação de falhas. O módulo principal desse framework permite que os algoritmos propostos façam a atribuição das tarefas de aplicações para diferentes servidores, usando parâmetros contextuais e redes WAVE e 5G. Os resultados dos experimentos mostram que nossas soluções podem reduzir significativamente o tempo de execução de aplicações veiculares. Baseado na metaheurística colônia artificial de abelhas, nosso melhor algoritmo consegue que essa redução média atinja até 75,6% se comparado à execução local e até 57,9% se comparado a algoritmos da literatura, com até 0,0% de falhas. Esses resultados mostram que as soluções propostas são uma alternativa promissora para viabilizar a execução de complexas aplicações veiculares. |
Abstract: | Autonomous vehicles and complex vehicular applications have become increasingly popular and require massive computational resources. Although vehicles are becoming more connected and intelligent, they still do not have enough computation power to satisfy these demands satisfactorily. One option to deal with this challenge is to allow computing resources from neighboring vehicles and edge servers coupled to base stations to be used through vehicular edge computing systems. Then, vehicles can send tasks, or smaller parts of applications, to these remote servers through the computation offloading technique. In this technique, such servers execute the tasks and return the processing result to the initial vehicle. Although this technique aims to reduce application execution time, performing it in vehicular scenarios is challenging due to the fast movement of network nodes and the frequent disconnections. In such cases, contextual information that characterizes the situation of network devices and vehicles helps to deal with these challenges by assisting offloading decision processes in delivering better results. Thus, we propose a context-oriented framework and task assignment algorithms to reduce the execution time of vehicular applications reliably through computation offloading in vehicular edge computing systems. The framework manages all stages of the offloading process and provides a failure recovery mechanism. The main module of this framework allows the proposed algorithms to assign application tasks to different servers, using contextual parameters and WAVE and 5G networks. Experimental results show that our solutions can significantly reduce the execution time of vehicular applications. Based on the artificial bee colony metaheuristic, our best algorithm achieves that this average reduction reaches up to 75.6% compared to local execution and up to 57.9% compared to literature algorithms, with up to 0.0% of failures. These results show that the proposed solutions are a promising alternative to enable the execution of complex vehicular applications. |
URI: | http://www.repositorio.ufc.br/handle/riufc/59823 |
Appears in Collections: | DCOMP - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021_tese_absouza.pdf | 3,77 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.