Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/59511
Tipo: | TCC |
Título : | Análise dos dados obtidos pelos sensores de trânsito através de séries temporais |
Título en inglés: | Analyze two data obtained from traffic sensor wires through temporary series |
Autor : | Gomes, Kamila Amélia Sousa |
Tutor: | Paula Júnior, Iális Cavalcante de |
Palabras clave : | Séries Temporais;Sensores de Trânsito;Anomalias;Prophet |
Fecha de publicación : | 2021 |
Citación : | GOMES, K. A. S. Análise dos dados obtidos pelos sensores de trânsito através de séries temporais.2021.50 f. Monografia (Graduação em Engenharia da Computação) - Universidade Federal do Ceará, Sobral, 2021. |
Resumen en portugués brasileño: | A evolução das tecnologias digitais permitem que as técnicas e ferramentas de monitoramento do trânsito de veículos tornem-se mais eficientes. Isto porquê, seria inviável um operador humano lidar sozinho com tantas informações. No entanto, podem ocorrer problemas durante a captura dessas informações e danificá-las. À essas informações errôneas ou insuficientes, que não seguem um comportamento padrão se comparada ao comportamento da maioria dos dados, dá-se o nome de anomalias. E, para a detecção desses objetos não esperados, pode-se utilizar séries temporais. São chamadas de séries temporais um conjunto de observações feitas sequencialmente ao longo do tempo. Sabendo disso, o objetivo do trabalho é analisar os dados capturados pelos sensores de trânsito através de séries temporais. Em seu desenvolvimento serão abordados conceitos teóricos fundamentais para o entendimento da metodologia, identificação de padrões anômalos na base de dados e aplicação de métodos de predição como: Arima, Prophet, Simple Exponential Smoothing, Walk Forward e Random Walk. Por fim, comparou-se os métodos através das métricas de erro: Root Mean Squared Error (RMSE) e Mean Absolute Error (MAE). Em síntese, foi observado que, o método de predição Prophet apresentou melhor desempenho em relação as demais técnicas. |
Abstract: | The evolution of digital technologies allows techniques and tools for monitoring vehicle traffic to become more efficient. This is why, it would not be viable for a human operator to deal with so much information alone. However, problems can occur while capturing information and damaging it. This erroneous or insufficient information, which does not follow a standard behavior when compared to the behavior of most data, is called anomalies. And, for the detection of these unexpected objects, time series can be used. A series of observations made sequentially over time are called time series. Knowing this, the objective of the work is to analyze the data captured by the traffic sensors through time series. In its development, fundamental theoretical concepts for understanding the methodology, identification of anomalous patterns in the database and application of prediction methods such as: Arima, Prophet, Simple Exponential Smoothing, Walk Forward and Random Walk. Finally, the methods were compared using error metrics: RMSE and MAE. In summary, it was observed that the Prophet prediction method performed better than the other techniques. |
Descripción : | GOMES, K. A. S. Análise dos dados obtidos pelos sensores de trânsito através de séries temporais.2021.50 f. Monografia (Graduação em Engenharia da Computação) - Universidade Federal do Ceará, Sobral, 2021. |
URI : | http://www.repositorio.ufc.br/handle/riufc/59511 |
Aparece en las colecciones: | ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2021_tcc_kasgomes.pdf | GOMES, K. A. S. Análise dos dados obtidos pelos sensores de trânsito através de séries temporais.2021.50 f. Monografia (Graduação em Engenharia da Computação) - Universidade Federal do Ceará, Sobral, 2021. | 1,37 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.