Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/59225
Tipo: Tese
Título: Alterações fisiológicas e metabólicas associadas com a tolerância à salinidade em sorgo
Título em inglês: Physiological and metabolic changes associated with salinity tolerance in sorghum
Autor(es): Oliveira, Daniel Farias de
Orientador: Gomes Filho, Enéas
Palavras-chave: Estresse salino;Estresse oxidativo;Metabolismo das poliaminas;Perfil metabólico;Sorghum bicolor L. Moench
Data do documento: 2020
Citação: OLIVEIRA, Daniel Farias de. Alterações fisiológicas e metabólicas associadas com a tolerância à salinidade em sorgo. 2020. 79 f. Tese (Doutorado em Bioquímica) - Universidade Federal do Ceará, Fortaleza, 2020.
Resumo: A salinidade é um estresse abiótico que limita fortemente o crescimento, o desenvolvimento e a produtividade das plantas, principalmente em regiões áridas e semiáridas. A sobrevivência em ambientes salinos depende de vários processos adaptativos, que envolvem absorção, transporte e distribuição de íons em vários órgãos vegetais, acúmulo de solutos orgânicos nas células e um eficiente sistema de defesa antioxidante para combater o estresse oxidativo. Utilizando-se dois genótipos de sorgo com diferentes graus de tolerância ao estresse salino, CSF20 (genótipo tolerante) e CSF18 (genótipo sensível), foram analisados os efeitos da salinidade (NaCl 75 mM) no crescimento, nos teores de íons (Na+, K+ e Cl–), nas trocas gasosas e fluorescência da clorofila a, nos teores dos pigmentos fotossintéticos (clorofilas a e b, carotenoides), no teor relativo de água (TRA) e no potencial osmótico (Ψo). Além disso, também foram analisados esses efeitos no acúmulo de solutos compatíveis (ácido γ-aminobutírico, prolina, aminoácidos livres e açúcares solúveis), nos teores de poliaminas (putrescina, espermidina e espermina) e nas atividades de enzimas do metabolismo das poliaminas, sendo também quantificados os teores de O2– e H2O2, a integridade das membranas biológicas, as atividades de enzimas do sistema de defesa antioxidativo e o perfil metabólico (metaboloma) dos dois genótipos. A salinidade promoveu reduções no crescimento e induziu aumentos nos teores de Na+ e Cl– e diminuiu o teor de K+. O estresse salino afetou as trocas gasosas, os parâmetros de emissão de fluorescência da clorofila a e os teores de carotenoides, com exceção na condutância estomática, na concentração interna de CO2, na transpiração, na ETR e no conteúdo de clorofilas. O TRA e o Ψo foram reduzidos pelo estresse salino, mas, para diminuir os danos principalmente no CSF20 o ajuste osmótico foi realizado com acúmulo de osmólitos e de poliaminas. A salinidade induziu aumentos nos teores de putrescina, no genótipo sensível, e de espermidina e espermina, no genótipo tolerante, e isto ocorreu, provavelmente, devido à regulação na atividade das enzimas oxidativas das poliaminas, diamina oxidase e poliamina oxidase. Os teores de O2– e H2O2 no genótipo CSF18 aumentaram em decorrência do estresse salino, enquanto no genótipo CSF20 observou-se aumento somente no conteúdo de H2O2. A integridade das membranas foi comprometida pela salinidade em ambos os genótipos, porém esse efeito foi menos pronunciado em CSF20. Os danos oxidativos nas folhas das plantas de sorgo foram mais acentuados no genótipo CSF18. De modo geral, as atividades das enzimas dismutase do superóxido, catalase, peroxidase do ascorbato e redutase da glutationa nas folhas de sorgo foram alteradas pela salinidade. Os danos oxidativos foram observados em maior intensidade no genótipo sensível à salinidade, o qual apresentou mais baixa atividade das enzimas antioxidativas e altos níveis de espécies reativas de oxigênio. A análise do metaboloma comprovou que a salinidade aumenta a biossíntese de poliaminas (espermidina e cadaverina), com acúmulo de importantes solutos compatíveis, como açúcares, polióis e prolina, além de intermediários do ciclo do ácido tricarboxílico no genótipo CSF20, mas não no genótipo sensível, o CSF18. Os dois genótipos de sorgo estudados foram afetados pelo estresse salino, mas as diferenças no crescimento confirmaram que CSF20 é mais tolerante ao estresse salino do que o CSF18. Os resultados, portanto, sugerem uma maior plasticidade do genótipo tolerante às mudanças nas condições ambientais, com alterações no metabolismo que favorecem o crescimento em condições adversas.
Abstract: Salinity is an abiotic stress that strongly limits plant growth, development and productivity, especially in arid and semiarid regions. Survival in saline environments depends on several adaptive processes, which involve absorption, transport and distribution of ions in various plant organs, accumulation of organic solutes in cells and an efficient antioxidant defense system to combat oxidative stress. Using two sorghum genotypes with different degrees of tolerance to salt stress, CSF20 (tolerant genotype) and CSF18 (sensitive genotype), were analyzed the effects of salinity (NaCl 75 mM) on growth, ion contents (Na+, K+ and Cl–), gas exchange and chlorophyll a fluorescence, levels of photosynthetic pigments (chlorophylls a and b, carotenoids), relative water content (TRA) and osmotic potential (Ψo). In addition, were also analyzed the effects on the accumulation of compatible solutes (γ-aminobutyric acid, proline, free amino acids and soluble sugars), levels of polyamines (putrescine, spermidine and spermine) and enzyme activities of the polyamines metabolism. Were also quantified the contents of O2– and H2O2, integrity of biological membranes, enzymes activities of the antioxidant system and the metabolic profile (metabolome) for both genotypes. Salinity promoted reductions in growth and induced increases in Na+ and Cl– contents and decreased K+ content. Salt stress affected gas exchange, chlorophyll a fluorescence emission parameters and carotenoid contents, except for stomatal conductance, internal CO2 concentration, transpiration, ETR and chlorophyll content. TRA and Ψo were reduced by salt stress, but to reduce damage, especially in CSF20, osmotic adjustment was performed with accumulation of osmolytes and polyamines. Salinity induced increases in the levels of putrescine, in the sensitive genotype, and spermidine and spermine, in the tolerant genotype, and this was probably due to the regulation of the activity of the oxidative enzymes of polyamines, diamine oxidase and polyamine oxidase. The contents of O2– and H2O2 in the CSF18 genotype increased due to salinity, while in the CSF20 genotype an increase was observed only in the content of H2O2. Membrane integrity was compromised by salinity in both genotypes, but this effect was less pronounced in CSF20. Oxidative damage to the leaves of sorghum plants was more pronounced in the CSF18 genotype. In general, the activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase enzymes in sorghum leaves were altered by salinity. Oxidative damage was observed in greater intensity in the salinity-sensitive genotype, which showed lower activity of antioxidative enzymes and high levels of reactive oxygen species. The metabolome analysis showed that salinity increases the biosynthesis of polyamines (spermidine and cadaverine), with accumulation of important compatible solutes, such as sugars, polyols and proline, in addition to tricarboxylic acid cycle intermediates in the CSF20 genotype, but not in the sensitive genotype. Both genotypes studied were affected by salt stress, but differences in growth confirmed that CSF20 is more tolerant to salt stress than CSF18. The results, therefore, suggest a greater plasticity of the genotype tolerant to changes in environmental conditions, with alterations in metabolism that favor growth under adverse conditions.
URI: http://www.repositorio.ufc.br/handle/riufc/59225
Aparece nas coleções:DBBM - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_tese_dfoliveira.pdf1,49 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.