Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/58460
Tipo: | Artigo de Periódico |
Título: | Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação |
Autor(es): | Ribeiro, Antonio Júnior Alves Silva, Carlos Augusto Uchôa da Barroso, Suelly Helena de Araújo |
Palavras-chave: | Geotecnia;Modelagem neural;Geoprocessamento |
Data do documento: | 2018 |
Citação: | RIBEIRO, Antonio Júnior Alves; SILVA, Carlos Augusto Uchôa da; BARROSO, Suelly Helena de Araújo. Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação. Transportes, São Paulo-SP, v. 26, n. 2, p. 1-17, 2018. |
Resumo: | Este artigo apresenta uma metodologia de baixo custo para previsão e mapeamento dos valores de CBR (California Bearing Ratio) dos solos nas energias de compactação normal (CBR-N) e intermediária (CBR-I), que possa contribuir para o processo da tomada de decisão, quanto ao seu uso para fins de pavimentação. Utilizou-se Geoprocessamento e Redes Neurais Artificiais (RNA) como técnicas de modelagem, bem como variáveis biofísicas e espaciais para explicar o fenômeno modelado. As características pesquisadas (pedologia, geologia, geomorfologia, vegetação, altimetria e posição) se correlacionaram com os valores de CBR dos solos nas duas energias de compactação. Os dados de CBR foram extraídos de projetos e estudos pré-existentes na área escolhida, neste caso, a Região Metropolitana de Fortaleza (RMF). Dessa forma, calibraram-se, validaram-se e testaram-se diversos modelos em RNA até encontrar os dois modelos de melhor ajuste para a geração de estimativas de CBR-N e CBR-I. As características geotécnicas estimadas por esses modelos possibilitaram a elaboração de dois Mapas Geotécnicos Neurais estratificados para previsão dos valores de CBR-N e CBR-I. Os resultados mostram claramente que a técnica de Redes Neurais Artificiais é promissora, tanto para estimar as propriedades mecânicas dos solos quanto para prever sua ocorrência e localização na área estudada. |
Abstract: | This paper presents a low-cost methodology for forecas%ng and mapping of CBR values (California Bearing Ra%o) of soils in the energies normal compression (CBR-N) and inter-mediate (CBR-I), which contribute to the decision-making process as to their use for paving purposes. GIS, Ar%ficial Neural Networks (ANN) and modeling techniques as well as biophysical and spa%al variables were used as explanatory of the modeled phenom-enon. The researched characteris%cs (pedology, geology, geomorphology, vegeta%on, hypsometry and posi%on) correlated with CBR values of soils in both energy compac%on. CBR data were extracted from pre-exis%ng projects and studies in the study area, in this case, the metropolitan area of Fortaleza (MAF). Thus, they were calibrated, validated and tested in many different ANN to find the two models best fit, for the genera%on of CBR-N es%mates and CBR-I, of the soil MAF from the studied biophysical variables. The geotechnical characteris%cs es%mated by these models enabled the development of two Neural Geotechnical Maps stra%fied to predict the values, CBR-N and CBR-I. The results show that ANN technique is promising to predict the mechanical proper%es of soils and can assist in making decisions regarding the use of these in road projects |
URI: | http://www.repositorio.ufc.br/handle/riufc/58460 |
ISSN: | 2237-1346 |
Aparece nas coleções: | DET - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2018_art_ajaribeiro.pdf | 4,46 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.