Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/55454
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Araújo, Jacques Henrique Bessa | - |
dc.contributor.author | Freitas Júnior, Walter da Cruz | - |
dc.contributor.author | Almeida, André Lima Férrer de | - |
dc.contributor.author | Viot, Diego Dutra | - |
dc.date.accessioned | 2020-11-24T17:11:52Z | - |
dc.date.available | 2020-11-24T17:11:52Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | ARAUJO, Jacques Henrique Bessa; FREITAS JÚNIOR, Walter da Cruz; ALMEIDA , André Lima Férrer de; VIOT, Diego Dutra. Experiments of speech enhancement based on deep neural networks in far field scenarios. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/55454 | - |
dc.description.abstract | Efficient speech enhancement techniques are essential to improve quality and intelligibility of speech signals and reliability in voice recognition applications. One way to reduce word error rate is through powerful noise reduction algorithms. This paper is intended to provide speech enhancement experiments based on deep neural networks (DNN) in far field scenarios under noisy environments. In the present work, it is investigated the use of DNNs as a front-end for automatic speech recognition (ASR). Objective metrics are used to investigate its effectiveness and results are compared against several popular speech enhancement algorithms. It is shown that DNN provides better results under all noisy and SNR conditions. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.subject | Speech enhancement | pt_BR |
dc.subject | Deep neural network | pt_BR |
dc.subject | Spectral mapping | pt_BR |
dc.title | Experiments of speech enhancement based on deep neural networks in far field scenarios. | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2016_eve_jhbaraujo.pdf | 4,11 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.