Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/52270
Type: Dissertação
Title: Predição de defeitos just-in-time em software utilizando inteligência artificial
Title in English: Defect prediction of just-in-time software using artificial intelligence
Authors: Ramos, Ismael Araújo
Advisor: Amora, Márcio André Baima
Keywords: Qualidade de software;Predição de defeitos;Just-in-time;Redes neurais artificiais;Árvore de decisão
Issue Date: 2020
Citation: RAMOS, I. A. Predição de defeitos just-in-time em software utilizando inteligência artificial. 2020. 70 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal do Ceará - Campus de Sobral, Sobral, 2020.
Abstract in Brazilian Portuguese: Durante o desenvolvimento ou modificação de um software, deve ser garantido que o produto final chegue ao usuário com a menor quantidade de erros possíveis. Modelos de predição de defeitos em software podem ser utilizados para isso. Os principais objetivos deste trabalho são realizar um estudo e apresentar uma proposta de modelo de predição de defeitos Just-In-Time (JIT) em software. Algumas vantagens da abordagem JIT são mais rapidez na análise, melhor aproveitamento de recursos, facilidade de identificação de possíveis áreas do código que estejam defeituosas e facilidade de encontrar o(s) autor(es) das modificações. Nesta dissertação é apresentada uma proposta para a solução do problema de identificação de erros JIT utilizando rede neural artificial (Artificial Neural Network - ANN) e árvore de decisão (Decision Tree – DT). As bases de dados utilizadas como treino, teste e validação apresentam no total 227417 commits divididos em seis projetos de software livre (Bugzilla, Columba, JDT, Mozilla, Platform e Postgres). Os resultados obtidos tanto com a ANN quanto com a DT são em média superiores aos trabalhos de comparação. Serão apresentadas as técnicas utilizadas no desenvolvimento do trabalho, bem como suas similaridades e diferenças com as abordagens anteriores.
Abstract: In the development or modification of a software, the product must have least amount of possible errors. Methods of predicting defects in software could be used for this. The principal objectives about this are performance a study and propose a defect prediction software Just-In-Time (JIT). Some advantages of the JIT approach are faster analise, better team utilization, easier identification of possible areas of code that are defective, and ease of finding the author (s) of modifications. In this work we present a proposal of the use of Just-In-Time (JIT) error identification using Artificial Neural Network (ANN) and decision tree (DT). The databases used as training, testing and validation have 227417 commits in total divided into six open source projects (Bugzilla, Columba, JDT, Mozilla, Platform and Postgres). The results obtained with techniques, ANN and DT, are on average higher than the works of comparation. The techniques used in the work development, as well as their similarities and differences with the previous approaches will be presented.
URI: http://www.repositorio.ufc.br/handle/riufc/52270
Appears in Collections:PPGEEC - SOBRAL - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2020_dis_iaramos.pdfRAMOS, I. A. Predição de defeitos just-in-time em software utilizando inteligência artificial. 2020. 70 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal do Ceará - Campus de Sobral, Sobral, 2020.1,42 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.