Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/49600
Tipo: Dissertação
Título : Uso de sensoriamento remoto hiperespectral na caracterização da cultura do algodoeiro (Gossypium hirsutum L.)
Título en inglés: Use of hyperspectral remote sensing in the characterisation of cotton (Gossypium hirsutum L.)
Autor : Oliveira, Marcio Regys Rabelo de
Tutor: Teixeira, Adunias dos Santos
Palabras clave : Sensoriamento remoto;Quimiometria;Gossypium hirsutum L.;Remote sensing;Chemometrics
Fecha de publicación : 2019
Citación : OLIVEIRA, Marcio Regys Rabelo de. Uso de sensoriamento remoto hiperespectral na caracterização da cultura do algodoeiro (Gossypium hirsutum L.). 2019. 145 f. Dissertação (Mestrado em Engenharia Agrícola) – Universidade federal do Ceará, Fortaleza, 2019.
Resumen en portugués brasileño: O Sensoriamento Remoto fornece tecnologias e conhecimento úteis para o incremento das produções agrícolas e assim o faz ao gerar soluções que otimizem o manejo destes nutrientes e a perspectiva do produtor. O potássio é um dos componentes bioquímicos mais importantes da matéria orgânica vegetal e, portanto, a estimativa dos seus componentes pode ajudar a monitorar os processos de metabolismo e a saúde das plantas. Nesse contexto, objetivou-se avaliar os parâmetros agronômicos e, em seguida, os fatores de reflectância na cultura do algodoeiro da cultivar BRS 293. A pesquisa foi realizada em ambiente semi-protegido localizado na área experimental no Laboratório de Hidráulica e Irrigação do Departamento de Engenharia Agrícola da Universidade Federal do Ceará - Campus do Pici, no município de Fortaleza, CE. Foram cultivadas 166 plantas em vasos de polietileno de baixa densidade, preenchidos com arisco e submetidos a um delineamento experimental inteiramente casualizado, cujos tratamentos correspondiam a quatro níveis de nitrogênio (N) e potássio (K) (50%, 75% 100% e 125% da demanda nutricional), onde todos os demais elementos foram satisfeitos, com vinte repetições e mantidos sob a mesma lâmina de irrigação diária. As máximas produtividades foram alcançadas em 264,67 kg.ha-1 e 348,81 kg.ha-1 de plumas sob as doses de 73,0 kg.ha-1 de K (100%) e 86,25 kg.ha-1 de N (125%), respectivamente. Verificou-se ainda a qualidade física das fibras de cada tratamento, ressaltando as doses N4(125%) e K3(100%) como os melhores índices micronaire, fiabilidade e reflectância. Os níveis de adubação de ambos os grupos de dados interferiram fortemente nos perfis espectrais de plantas de algodão. As variações nas curvas derivadas individualizaram pontos estratégicos de avaliação para ambos tratamentos, são eles: os comprimentos de onda 510, 690, 997, 1152, 1390 e 1880 nm de acentuada ascendência ou descendência e pontos de inflexão característicos em 550, 590, 667, 715, 730, 1006, 1130 e 1380 nm. A análise derivativa de segunda ordem e ACP foram mais eficientes ao identificar as variações entre os tratamentos nas seguintes faixas de comprimento de onda: i) do visível (380 a 750nm), para o nitrogênio; e ii) nas faixas de absorção de água pela planta (1400 e 1800 nm), para o potássio. O desempenho dos modelos de PLSR na quimiometria das folhas de algodoeiro foi analisado em função de seu coeficiente de determinação ajustado, raiz do quadrado dos erros médio e do desvio da predição residual. Os resultados da validação indicaram que o método PLSR útil na elaboração de um modelo preditivo capaz de captar 82,0 % da variação de na concentração foliar de potássio, com RMSE de [3,74] e RPD de [1,61], apresentando uma boa habilidade na estimação.
Abstract: Remote Sensing provides technologies and knowledge useful for increasing agricultural yields and does so by generating solutions that optimize the management of these nutrients and the perspective of the producer. Potassium is one of the most important biochemical components of plant organic matter, so estimating its components can help monitor metabolism processes and plant health. In this context, the objective was to evaluate the agronomic parameters and, then, the reflectance factors in the cotton crop of cultivar BRS 293. The research was carried out in a semi-protected environment located in the experimental area at the Hydraulics and Irrigation Laboratory of the Department of Agricultural Engineering of the Federal University of Ceará - Campus do Pici, in the city of Fortaleza, CE. A total of 166 plants were cultivated in low density polyethylene pots, filled with arisk and subjected to a completely randomized experimental design, whose treatments corresponded to four levels of nitrogen (N) and potassium (K) (50%, 75% 100% and 125% of the nutritional demand), where all other elements were satisfied, with twenty repetitions and kept under the same daily irrigation depth. The highest yields were reached in 264.67 kg.ha-1 and 348.81 kg.ha-1 of feathers under the doses of 73.0 kg.ha-1 of K (100%) and 86.25 kg.ha -1 N (125%), respectively. The physical quality of the fibers of each treatment was also verified, emphasizing the doses N4 (125%) and K3 (100%) as the best micronaire indices, reliability and reflectance. Fertilization levels of both data groups strongly interfered with the spectral profiles of cotton plants. Variations in the derived curves have individualized strategic evaluation points for both treatments, namely: wavelengths 510, 690, 997, 1152, 1390 and 1880 nm of sharp ascendancy or descent and characteristic inflection points at 550, 590, 667, 715, 730, 1006, 1130 and 1380 nm. Second-order derivative analysis and PCA were more efficient in identifying variations between treatments in the following wavelength ranges: i) from visible (380 to 750nm) for nitrogen; and ii) in the plant water absorption ranges (1400 and 1800 nm) for potassium. The performance of the PLSR models on cotton leaf chemometrics was analyzed as a function of their adjusted coefficient of determination, root mean square error and residual prediction deviation. The validation results indicated that the PLSR method is useful in the elaboration of a predictive model capable of capturing 82.0% of the variation in leaf potassium concentration, with RMSE of [3.74] and RPD of [1.61], presenting a good estimation ability.
URI : http://www.repositorio.ufc.br/handle/riufc/49600
Aparece en las colecciones: PPGENA - Dissertações defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
dis_2019_mrrdoliveira.pdf6,38 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.