Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/49209
Type: Dissertação
Title: Preparo e caracterização de hidrogéis injetáveis de galactomanana de Delonix regia oxidada e gelatina
Title in English: Preparation and characterization of injected Delonix regia galactomannan hydrogel injectables and gelatin
Authors: Ramos, Everton Lucas de Lima
Advisor: Feitosa, Judith Pessoa de Andrade
Keywords: Hidrogéis injetáveis;Galactomanana;Oxidação;Base de Schiff;Gelatina
Issue Date: 2019
Citation: RAMOS, Everton Lucas de Lima. Título. 2016. 65 f. Dissertação (Mestrado em Química) - Universidade Federal do Ceará, Fortaleza, 2016.
Abstract in Brazilian Portuguese: Os hidrogéis injetáveis são definidos como uma classe de géis que podem ser preparados in situ através da extrusão de seus componentes diretamente no local desejado. Seus componentes sofrem uma transição de fase líquido→gel sob condições fisiológicas devido à reticulação química ou física. Esse hidrogéis podem ser preparados a partir de polímeros naturais ou sintéticos, sendo que a utilização daqueles de fontes naturais é preferível por sua similaridade com alguns componentes da matriz extracelular natural. A galactomanana é um heteropolissacarídeo que devido seu padrão de ligação pode ser oxidada pelo íon periodato, dando origem a um derivado com dois grupos aldeído por cada unidade monossacarídica, a galactomanana oxidada (GMOX). A gelatina é uma proteína amplamente utilizada para aplicações biomédicas, devido sua biocompatibilidade e biodegradabilidade. Todavia, ela encontra limitação em sua aplicação associada com sua baixa estabilidade térmica em temperatura fisiológica. A reticulação com polissacarídeos oxidados pode ser utilizada como uma alternativa para contornar essa problemática através da formação de ligações imina, também conhecida por base de Schiff (C=N). Este trabalho propõe a preparação e caracterização de hidrogéis injetáveis a partir de GMOX de Delonix regia e gelatina de pele de porco. A galactomanana foi modificada com diferentes graus de oxidação (10, 20, 50 e 70%). Os derivados oxidados foram caracterizados por FTIR, GPC, TGA e RMN 1H. A modificação foi confirmada pelo aparecimento de uma pequena banda em 1723 cm-1 no espectro de FTIR, que foi atribuída ao estiramento da ligação C=O relacionada com a presença do grupo aldeído. O processo de oxidação levou a uma progressiva degradação da cadeia da galactomanana com consequente diminuição de sua massa molar. Os derivados oxidados apresentaram uma diminuição em sua estabilidade térmica. A análise de RMN mostrou o aparecimento de uma série de sinais na região entre 4,5 e 5,6 ppm, que são atribuídos a estruturas hemiacetálicas. Os hidrogéis foram preparados pela combinação da GMOX (dissolvida em PBS ou bórax 0,1 mol/L) com a gelatina (dissolvida em PBS) na razão GMOX/Gelatina de 1:1, 1:2 e 2:1. A combinação da gelatina com a GMOX levou a uma melhora em sua estabilidade térmica, mostrando assim que o processo de reticulação foi eficiente. A partir do tempo de geleificação pôde-se determinar que as razões 1:1 e 1:2 foram as mais promissoras. Os tempos de geleificação das formulações mais promissoras variaram entre 5 e 53 minutos. O espectro de FTIR dos hidrogéis mostrou uma banda em 1640 cm-1 que está associada com a ligação C=N. A microscopia eletrônica de varredura mostrou que os hidrogéis são formados por estruturas altamente porosas. Os ensaios mecânicos revelaram um comportamento predominantemente elástico dos hidrogéis com valores variando entre 9 e 36 kPa. Os resultados obtidos fazem destes hidrogéis promissores candidatos para futuras aplicações biomédicas, tais como: agente para liberação controlada de fármacos, encapsulamento de células e/ou para preenchimento de espaços do corpo defeituosos ou danificados.
Abstract: Injectable hydrogels are defined as a class of gels that can be prepared in situ by extruding their components directly to the desired location. Its components undergo a liquid → gel phase transition under physiological conditions due to chemical or physical crosslinking. Such hydrogels may be prepared from natural or synthetic polymers, and the use of those from natural sources is preferable for their similarity to some components of the natural extracellular matrix. Galactomannan is a heteropolysaccharide which due to its binding pattern can be oxidized by the periodate ion, giving rise to a derivative with two aldehyde groups for each monosaccharide unit, oxidized galactomannan (OXGM). Gelatin is a protein widely used for biomedical applications due to its biocompatibility and biodegradability. However, it finds limitations in its application associated with its low thermal stability at physiological temperature. Crosslinking with oxidized polysaccharides can be used as an alternative to overcome this problem by forming imine bonds, also known as Schiff's base (C = N). This work proposes the preparation and characterization of injectable hydrogels from Delonix regia OXGM and pigskin gelatin. Galactomannan was modified with different degrees of oxidation (10, 20, 50 and 70%). Oxidized derivatives were characterized by FTIR, GPC, TG and 1H NMR. The modification was confirmed by the appearance of a small band at 1723 cm-1 in the FTIR spectrum, which was attributed to the C = O bond stretch related to the presence of the aldehyde group. The oxidation process led to a progressive degradation of the galactomannan chain which resulted in a decrease in its peak molar mass. The oxidized derivatives showed a decrease in their thermal stability. NMR analysis showed the appearance of a series of signals in the region between 4.5 and 5.6 ppm, which are attributed to hemiacetallic structures. The hydrogels were prepared by combining OXGM (dissolved in PBS or 0.1 mol/L borax) with gelatin (dissolved in PBS) in the OXGM/Gelatin ratio of 1:1, 1:2 and 2:1. The combination of gelatin with OXGM led to an improvement in its thermal stability, thus showing that the crosslinking process was efficient. From the gelation time it could be determined that the ratios 1:1 and 1:2 were the most promising. The gelation times of the most promising formulations ranged from 5 to 53 minutes. The FTIR spectrum of the hydrogels showed a band at 1640 cm-1 which is associated with the C = N bond. Scanning electron microscopy has shown that hydrogels are formed by highly porous structures. Mechanical tests revealed a predominantly elastic behavior of hydrogels with values ranging from 9 to 36 kPa. The results obtained make these hydrogels possible candidates for future biomedical applications as agents for controlled drug release, cell encapsulation and/or space filling.
URI: http://www.repositorio.ufc.br/handle/riufc/49209
Appears in Collections:DQOI - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2016_dis_ellramos.pdf2,23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.