Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/4080
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorColares, Antonio Gervásio-
dc.contributor.authorViana, Emanuel Mendonça-
dc.date.accessioned2012-11-28T15:39:57Z-
dc.date.available2012-11-28T15:39:57Z-
dc.date.issued2012-
dc.identifier.citationVIANA, Emanuel Mendonça. Hipersuperfícies cujas geodésicas tangentes não cobrem o espaço ambiente. 2012. 51 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2012.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/4080-
dc.description.abstractLet I : ∑n → Mn+1 be an immersion of an n-dimensional connected manifold ∑ in an (n + 1)-dimensional connected completed Riemannian manifold M without conjugate points. Assume that the union of geodesics tangent to I does not cover M. Under these hypotheses we have two results: 1. M is simply connected provided that the universal covering of ∑ is compact. 2. If I is a proper embedding and M is simply connected, then I(∑) is a normal graph over an open subset os a geodesic sphere. Furthermore, there exists an open star-shaped set A M such that A is a manifold with the boundary I(∑).pt_BR
dc.language.isopt_BRpt_BR
dc.subjectVariedades riemanianaspt_BR
dc.subjectGeometriapt_BR
dc.subjectGeometria diferencialpt_BR
dc.titleHipersuperfícies cujas geodésicas tangentes não cobrem o espaço ambientept_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrSeja I : ∑n → Mn+1 uma imersão de uma variedade conexa n-dimensional ∑ em uma variedade Riemanniana completa conexa (n + 1)-dimensional M sem pontos conjugados. Suponha que a união das geodésicas tangentes a I não cobrem M. Sobre essa hipótese temos dois resultados: 1. Se a cobertura universal de ∑ é compacta, então M é simplesmente conexa. 2. Se I é um mergulho próprio e M é simplesmente conexa, então I(∑) é um gráfico normal sobre um subconjunto aberto de uma esfera geodésica. Além disso, existe um conjunto estrelado aberto A está contido em M tal que A é uma variedade com fronteira I(∑).pt_BR
dc.title.enHypersurfaces whose tangent geodesics do not cover the ambient spacept_BR
Aparece nas coleções:DMAT - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2012_dis_emviana.pdf498,16 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.