Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/23215
Type: Dissertação
Title: Assessing the potential of activated carbons from polyethylene terephthalate (PET) as adsorbents to separate co2 from flue gas
Authors: Moura, Pedro Augusto Silva de
Advisor: Azevedo, Diana Cristina Silva de
Co-advisor: Garcia, Enrique Vilarrasa
Keywords: Engenharia química;Adsorção;Dióxido de carbono
Issue Date: 2017
Citation: MOURA, P. A. S. Assessing the potential of activated carbons from polyethylene terephthalate (PET) as adsorbents to separate co2 from flue gas. 2017. 65 f. Dissertação (Mestrado em Engenharia Química)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
Abstract in Brazilian Portuguese: O Efeito Estufa é um grave problema que preocupa todos os países, fazendo-se necessário encontrar uma solução definitiva para minimizar ou desacelerar seu efeito. O aumento da temperatura e do nível dos oceanos são alguns relevantes efeitos que podem ser sentidos por toda a população mundial. A concentração de Dióxido de Carbono (CO2) no ar atmosférico é um dos principais responsáveis por este efeito. Outro grande problema em nossa sociedade, é a alta produção e acúmulo de resíduos de polímeros de Polietileno Tereftalato (PET) nos últimos anos, principalmente, como embalagens para produtos líquidos. A produção de carbonos ativados a partir do PET gera materiais com propriedades interessantes para a adsorção de gases e armazenamento. O objetivo central deste trabalho é avaliar o potencial destes carbonos ativados de PET (ACPX’s) como adsorventes para a captura de CO2 presente em diferentes correntes gasosas, como em gases de combustão. ACPX’s tem altos volume de poro e área superficial com uma estreita distribuição de tamanho dos poros (0,5-2 nm) e uma superfície hidrofóbica, praticamente, sem grupos funcionais. Isotermas mono e multi componentes com CO2 e N2 revelaram uma seletividade interessante para um cenário de separação de gases de pós-combustão. Foram produzidos carbonos ativados em distintas condições de ativação, que levaram a distintos graus de “burn-off” (22, 41 e 76) e distribuição de tamanho de poros. Estes adsorventes têm uma elevada afinidade para o CO2, ACPX-76 atinge a capacidade de adsorção de 6,323 mmol g -1 a 4 bar e 298 K. Por outro lado, a amostra ACPX-22 tem uma maior proporção de microporosidade estreita (97,3%), Por sua vez, uma maior seletividade para o CO2 em relação a N2 (15,98 a 4 bar e 298 K). A curva de entalpia de adsorção diferencial é típica de amostras altamente microporosas que atingem valores próximos aos encontrados em zeólitas (40 kJ mol-1) para cargas baixas, descendo para valores apenas ligeiramente acima da pura condensação de CO2 (17 kJ mol-1) a cargas mais elevadas. Verificou-se que quanto maior a queima, maior a Distribuição do Tamanho de Poros (PSD) e, portanto, a maior capacidade de CO2 pode ser alcançada. No entanto, maiores seletividades de CO2 / N2 são encontradas para a amostra menos ativada, que tem a menor queima, menor absorção de CO2 e o PSD mais estreito. O melhor comprometimento desses parâmetros (capacidade de trabalho, seletividade e entalpia de adsorção) foi encontrado para a amostra ACPX-41, usando um indicador.
Abstract: The Greenhouse Effect is a serious problem that concerns all countries and a solution to minimize or slow down this effect is mandatory. Increases in temperature and sea water level have caused some relevant impacts that can be felt by most of the world population. Carbon Dioxide (CO2) is claimed as one of the main causes of this effect. Another problem in our society is the increasing production of Polyethylene Terephthalate (PET) polymers along the years, mainly used as soft drink bottles. Post-consumption bottles disposal is a huge problem to the world. The production of activated carbons from PET wastes generates materials with interesting properties for gas adsorption and storage. The aim of this work is to assess the potential of these activated carbons from PET (ACPXs) as adsorbents to separate CO2 from flue gas. ACPXs have an exceptionally high surface area with pore sizes concentrated in a very narrow range (0.5-2 nm) and a hydrophobic surface with nearly no functional groups. Increasing burn-off degrees (22, 41 and 76%) led to adsorbents with a broader pore size distribution (PSD), but all mainly in the range of micropores. Single gas and mixed gas isotherms with CO2 and N2 reveal that the samples have an interesting selectivity for flue gas separation. These adsorbents have a high affinity for CO2, ACPX-76 reaching an adsorption uptake of 6.323 mmol g-1 at 4 bar and 298 K. On the other hand, sample ACPX-22 has a higher narrow microporosity proportion (97.3%), which in turn gives a higher selectivity for CO2 over N2 (15.98 at 4 bar and 298 K). The differential adsorption enthalpy curves are typical of highly microporous samples reaching values close to those found in zeolites (40 kJ mol-1) for low loadings, going down to values only slightly above the neat of condensation of CO2 (17 kJ mol-1) at higher loadings. It was found that the higher the burn-off, the wider the PSD and hence the greatest CO2 capacity may be achieved. Nevertheless, higher CO2/N2 selectivities are found for the less activated sample, which has the lowest burn-off, lowest CO2 uptake and the narrower Pore Size Distribution (PSD). The best trade-off of these parameters (working capacity, selectivity and adsorption enthalpy) was found for sample ACPX-41, with an intermediate burn-off, by comparison of an adsorbent performance indicator (API), as proposed in the literature.
URI: http://www.repositorio.ufc.br/handle/riufc/23215
Appears in Collections:DEQ - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2017_dis_pasmoura.pdf2,09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.