Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/22952
Type: | Tese |
Title: | Previsão de variáveis macroeconômicas utilizando modelos fatoriais |
Authors: | Silva, Thiberio Mota da |
Advisor: | Ferreira, Roberto Tatiwa |
Keywords: | Macroeconomia;Variáveis macroeconômicas |
Issue Date: | 2017 |
Citation: | SILVA, Thibério Mota da. Previsão de variáveis macroeconômicas utilizando modelos fatoriais. Tese (Doutorado) - Universidade Federal do Ceará, Programa de Pós Graduação em Economia, CAEN, Fortaleza, 2017. 92f. |
Abstract in Brazilian Portuguese: | O primeiro artigo analisa o desempenho de vários modelos de fatores de alta dimensão para prever nove variáveis macroeconômicas brasileiras, incluindo a taxa de desemprego, o índice de produção industrial, seis índices de preços e taxa de câmbio. Os fatores são extraídos de um conjunto de dados composto por 117 variáveis macroeconômicas. Métodos de shrinkage e combinações de previsões são utilizadas para selecionar ou combinar o melhor modelo fatorial de previsão. Os métodos de shrinkage utilizados foram Least Angle Regressions e Elastic Net , Bagging, Non Negative Garrote. Por sua vez, os métodos de combinações de previsões aplicados foram baseados no critério de Mallows, métodos bayesianos ponderados, validação cruzada, Leave-h-Out e modelo de ponderação de Jacknife. Todas as previsões foram avaliadas por meio do Model Con dence Set (MCS) que estabelece os melhores modelos de previsão que satisfaçam algum intervalo de confiança para o erro de previsão. Os resultados sugerem que, em geral, os modelos fatoriais apresentam um erro quadrático médio de previsão (MSFE) menor que o benchmark AR (4). Os melhores modelos de fatores para prever variáveis macroeconômicas brasileiras foram o Elastic Net e o Least Angle Regressions. Em algumas situações os modelos de ponderações Non Negative Garrote e Bayesiano apresentaram previsões satisfatórias. O segundo artigo analisa o desempenho dos modelos fatoriais supervisionados frente aos não supervisionados para prever quatro variáveis macroeconômicas brasileiras, dentre elas, o índice de produção industrial, o índice de preço ao consumidor amplo, o índice de nacional de preços ao consumidor e a taxa de juros de longo de prazo. Os fatores são extraídos de um conjunto de dados composto por 117 variáveis macroeconômicas. Os fatores foram extraídos por meio de combinação de fatores, no caso, dos modelos supervisionados, e no caso dos modelos não supervisionados, foi utilizado o método de previsões combinadas, o mesmo utilizado por Tu e Lee (2012). Os modelos de previsão utilizados foram: Modelos Autoregressivos Aumentados (FAAR), Modelos Bayesianos Ponderados (BMA), modelo Mallows ponderado (MMA), modelo jacknife ponderado (JMA), validação cruzada leaveh- out (LHO) e o modelo de média simples (SMA). O melhor modelo será o que apresenta a menor raiz quadrada do erro quadrático médio (REQM). Os resultados mostram que o esquema de janela móvel foi mais e capaz e o modelo de previsão que obteve melhor performance foi o modelo ponderado BMA, para ambos os modelos fatoriais, supervisionados ou não, além disso, os modelos supervisionados são mais eficazes para realizar previsões no médio prazo, pois previu com mais acurácia três, dentre as quatro, variáveis alvos, apresentando um menor (REQM). O terceiro artigo propõe um método de ponderação dinâmica de previsores (DMA) aplicado a grandes bases de dados. As variáveis contidas na base de dados têm a dimensão reduzida a um número r de fatores que são combinados dinamicamente por meio de fatores de esquecimento. A extração dos fatores considera também uma janela exponencial de esquecimento que visa reduzir o impacto de observações muito antigas. Mostra-se que tal modelo, chamado de FDMA, converge assintoticamente para a combinação dinâmica de fatores observados quando o número de variáveis ou o tamanho da amostra de fora cresce. Além disso, o modelo FDMA é aplicado em dois diferentes exercícios empíricos. Primeiro para prever seis variáveis macroeconômicas americanas, incluindo variáveis reais e nominais, e após para prever o excesso de retorno do S&P 500. Os resultados empíricos mostram que o FDMA e suas variações apresentam-se como uma alternativa promissora para previsão. |
Abstract: | The first article analyzes the performance of several high quality models to predict nine Brazilian macroeconomic variables, including unemployment rate, industrial production index, six price indices and exchange rate. The factors are extracted from a set of data composed of 117 macroeconomic variables. Reduction methods and combinations of forecasts are used to select or combine the best predictor factorial model. Regressions of minimum angle and Elastic Net, Bagging, Non-Negative Garrote. In turn, the methods of prediction combinations applied were based on the criterion of Mallows, weighted Bayesian methods, cross-validation, Leave-h-Out and Jacknife weighting model. All predictions were evaluated using the Model Condition Set (MCS) that establish the best forecast models that satisfy a confidence interval for the forecast error. The results suggest that, in general, the factorial models present a mean square error of prediction (MSFE) lower than the AR benchmark (4). The best models of factors to predict Brazilian macroeconomic variables. In some positions of the Non-Negative Garrote and Bayesian weighting models presented satisfactory predictions. The second article analyzes the performance of supervised versus unsupervised factorial models to predict four Brazilian macroeconomic variables, including industrial production index, broad consumer price index, national consumer price index and Long-term interest. The factors are extracted from a set of data composed of 117 macroeconomic variables. The models were extracted by means of combination of factors, no case, supervised models, and there are no cases of unsupervised models, was used by the method of combined forecasts, or even used by Tu and Lee (2012). The Autoregressive Models Augmented (FAAR), Weighted Bayesian Models (BMA), weighted Mallows model (MMA), weighted jacknife model (JMA), cross validation (SMA). The best model is the one that presents a smaller mean square error quadrant (REQM). The results show that the mobile window model was more capable and predictive model that obtained better performance for the BMA weighted model, for both factorial models, supervised or not, in addition, supervised models are more efficient to perform non-average predictions Three-year-old, among the four, target variables, presenting a minor (REQM). The third article proposes a method of dynamic data weighting (DMA) applied to large databases. How variables contained in the database have a size reduced to a number of factors that are dynamically combined through forgetting factors. The extraction of factors also considers an exponential window of exhaustion that aims to reduce the impact of very old observations. It is shown that model, called FDMA, converge asymptotically to a dynamic combination of observed factors when the number of variables or the size of the sample from outside grows. In addition, the FDMA model is applied in two different empirical exercises. 1. The empirical results show that the FDMA and its variations are considered as an alternative to the forecast. |
URI: | http://www.repositorio.ufc.br/handle/riufc/22952 |
Appears in Collections: | CAEN - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2017_tese_tmsilva.pdf | 1,25 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.