Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/19036
Tipo: Artigo de Evento
Título : Artificial neural networks for compression of gray scale images: a benchmark
Autor : Souza, Osvaldo de
Cortez, Paulo Cesar
Silva, Francisco de Assis Tavares Ferreira da
Palabras clave : Artificial neural network;Digital image compression;Neural network benchmark;Morphological neural network;Vector quantization;Mathematical morphology
Fecha de publicación : 2013
Editorial : SBC
Citación : SOUSA, Osvaldo de; CORTEZ, Paulo Cesar; SILVA, Francisco de Assis Tavares Ferreira da. Artificial neural networks for compression of gray scale images: a benchmark. In: National Meeting on Artificial and Computational Intelligence, 10., 2013, Fortaleza. Anais... Fortaleza: SBC, 2013.
Abstract: In this paper we present results for an investigation of the use of neural networks for the compression of digital images. The main objective of this investigation is the establishment of a ranking of the performance of neural networks with different architectures and different principles of convergence. The ranking involves backpropagation networks (BPNs), hierarchical back-propagation network (HBPN), adaptive back-propagation network (ABPN), a self-organizing maps (KSOM), hierarchically self-organizing maps (HSOM), radial basis function neural networks (RBF) and a supervised Morphological neural networks (SMNN). For the SMNN, considering that it is a neural network recently introduced, an explanation is presented for use in image compression. Gray scale image of Lena were used as the sample image for all network covered in this research. The best result is compression rate of 195.54 with PSNR = 22.97.
URI : http://www.repositorio.ufc.br/handle/riufc/19036
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DCINF - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_eve_osouza.pdf1,31 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.