Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/12554
Tipo: Artigo de Evento
Título : Machine learning and adaptive morphological operators
Autor : Almeida Filho, Magno Prudêncio de
Silva, Francisco de Assis Tavares Ferreira da
Braga, Arthur Plínio de Souza
Palabras clave : Reconhecimento de padrões;Morfologia matemática;Engenharia elétrica
Fecha de publicación : 2014
Editorial : Encontro Nacional de Inteligência Artificial e Computacional
Citación : ALMEIDA FILHO, M. P. ; SILVA, F. A. T. F. ; BRAGA, A. P. S. Machine learning and adaptive morphological operators. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL, 11., 2014, São Carlos. Anais... São Carlos: ENIAC, 2014.
Abstract: This work proposes the use of machine learning methods applied to the construction of a gray level adaptive hit-or-miss morphological operator. Because they are adaptive and translation invariant, it is expected that these operators can be better utilized for the process of pattern recognition. In a first approach, the investigated adaptive model is inspired on the Vector Quantization Unsupervised Learn Rule and developed through Elementary Look-Up Tables (ELUTs) formalism of elementary morphological operators in gray level images.
URI : http://www.repositorio.ufc.br/handle/riufc/12554
Aparece en las colecciones: DEEL - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2014_eve_apsbraga machine.pdf475,35 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.