Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/1148
Tipo: Dissertação
Título : Cota inferior para autovalores de hipersuperfícies mínimas mergulhadas na esfera euclidiana
Título en inglés: Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
Autor : Veras, Tiago Mendonça Lucena de
Tutor: Barros, Abdênago Alves de
Palabras clave : Variedades riemanianas;Autovalores;Geometria diferencial
Fecha de publicación : 2011
Citación : VERAS, Tiago Mendonça Lucena de. Cota inferior para autovalores de hipersuperfícies mínimas mergulhadas na esfera euclidiana. 2011. 50 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.
Resumen en portugués brasileño: Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersão mínima de Mn na esfera unitária Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na métrica induzida por x, veja [11]. Segue que n é uma cota superior para o primeiro autovalor λ1 de Δ. Quando x é um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, é igual a n. O primeiro resultado global na direção de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) é uma constante positiva que depende de Mn e x. O objetivo deste trabalho é apresentar algumas condições para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau é verdadeira sob estas condições.
Abstract: Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashi’s theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions.
URI : http://www.repositorio.ufc.br/handle/riufc/1148
Aparece en las colecciones: DMAT - Dissertações defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2011_dis_tmlveras.pdf309,51 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.