Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/10812
Type: | Artigo de Periódico |
Title: | Valproic acid neuroprotection in the 6-OHDA model of Parkinson’s disease is possibly related to its anti-inflammatory and HDAC inhibitory properties |
Authors: | Ximenes, José Christian Machado Neves, Kelly Rose Tavares Leal, Luzia Kalyne Almeida Moreira Carmo, Marta Regina Santos do Brito, Gerly Anne de Castro Naffah-Mazzacoratti, Maria da Graça Cavalheiro, Ésper Abrão Viana, Glauce Socorro de Barros |
Keywords: | Ácido Valproico;Doença de Parkinson |
Issue Date: | 2015 |
Publisher: | Journal of Neurodegenerative Diseases |
Citation: | XIMENES, J. C. M. et al. Valproic acid neuroprotection in the 6-OHDA model of Parkinson’s disease is possibly related to its anti-inflammatory and HDAC inhibitory properties. Journal of Neurodegenerative Diseases, v. 2015, p. 1-14, 2015. |
Abstract: | Parkinson’s disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PDalso causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson’s disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC).The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatumand reversed the THdepletion observed in themesencephalon of the untreated 6-OHDA groups. This neurotoxin increased theOX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha andHDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments.These results were observed not only in the CA1 and CA3 subfields of the hippocampus, but also in the temporal cortex. In conclusion, we showed thatVApartly reversed the behavioral, neurochemical, histological, and immunohistochemical alterations observed in the untreated 6-OHDA-lesioned animals. These effects are probably related to the drug anti-inflammatory activity and strongly suggest thatVAis a potential candidate to be included in translational studies for the treatment of neurodegenerative diseases as PD. |
URI: | http://www.repositorio.ufc.br/handle/riufc/10812 |
Appears in Collections: | DFIFA - Artigos publicados em revista científica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2015_art_mrscarmo.pdf | 4,46 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.