Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/82775
Tipo: Tese
Título: Electrostatically confined quantum dots in bilayer phosphorene
Título em inglês: Electrostatically confined quantum dots in bilayer phosphorene
Autor(es): Paz, Maria Lúcia Alvares
Orientador: Farias, Gil de Aquino
Coorientador: Costa, Diego Rabelo da
Palavras-chave em português: Materiais bidimensionais;Semicondutores anisotrópicos;Propriedades eletrônicas;Fosforeno;Pontos quânticos
Palavras-chave em inglês: Two-dimensional materials;Anisotropic semiconductors;Electronic properties;Phosphorene;Quantum dots
Data do documento: 2025
Citação: PAZ, Maria Lúcia Alvares. Electrostatically confined quantum dots in bilayer phosphorene. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025.
Resumo: Desde o isolamento do grafeno em poucas camadas em 2004 por Geim e Novoselov, materiais em suas versões lamelares têm recebido grande destaque na comunidade científica e tecnológica devido às propriedades eletrônicas, ópticas e de transporte peculiares que não estão presentes em suas versões bulk. Entre esses materiais bidimensionais, o fósforo negro, um alótropo do fósforo, apresenta alta mobilidade eletrônica e, ao contrário do grafeno, é um semicondutor cujo gap de energia depende fortemente do número de camadas. O amplo intervalo de frequências coberto pelo gap variável (~ 2.0 eV para monocamada até ~ 0.3 eV no bulk, aliado a propriedades anisotrópicas em sua estrutura eletrônica, torna esse material promissor para diversas aplicações, especialmente em optoeletrônica. Neste trabalho, investigamos as propriedades eletrônicas de portadores de carga confinados em pontos quânticos definidos exclusivamente por meio de um potencial eletrostático dependente da posição, sem necessidade de recorte físico do material. Esse potencial quebra a simetria de inversão da bicamada de fosforeno, modulando localmente o gap e permitindo o confinamento dos portadores de carga. Utilizamos o método tight-binding para investigar numericamente os estados eletrônicos e suas funções de onda em potenciais de simetria circular, na ausência e presença de um campo magnético perpendicular. Como resultados principais, identificamos o fechamento do gap para um valor crítico do potencial, a consequente emergência de cones de Dirac e que o gap de energia dos pontos quânticos segue uma lei de potência com o raio, Eg(R) ∝ 1/R1.38, evidenciando o papel combinado do confinamento eletrostático e da anisotropia do material.
Abstract: Since the isolation of few-layer graphene in 2004 by Geim and Novoselov, materials in their lamellar versions have received great attention from the scientific and technological community due to their peculiar electronic, optical, and transport properties that are not present in their bulk forms. Among these two-dimensional materials, black phosphorus, an allotrope of phosphorus, exhibits high electron mobility and, unlike graphene, is a semiconductor whose energy gap strongly depends on the number of layers. The wide frequency range covered by the tunable gap (~ 2.0 eV for the monolayer down to ~0.3 eV in the bulk, combined with the anisotropic properties of its electronic structure, makes this material promising for various applications, especially in optoelectronics. In this work, we investigate the electronic properties of charge carriers confined in quantum dots defined exclusively through a position-dependent electrostatic potential, without the need for physical patterning of the material. This potential breaks the inversion symmetry of bilayer phosphorene, locally modulating the gap and allowing for charge carrier confinement. We employ the tight-binding method to numerically investigate the electronic states and their wave functions under circularly symmetric potentials, both in the absence and presence of a perpendicular magnetic field. As the main results, we identify the closing of the gap at a critical value of the applied potential, the consequent emergence of Dirac cones, and that the quantum dot energy gap follows a power-law dependence on the dot radius, Eg(R) ∝ 1/R1.38, highlighting the combined role of electrostatic confinement and material anisotropy.
Descrição: PAZ, Maria Lúcia Alvares. Electrostatically confined quantum dots in bilayer phosphorene. Tese (Doutorado em Física: Física da Matéria Condensada) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2025.
URI: http://repositorio.ufc.br/handle/riufc/82775
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:DFI - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2025_tese_mlapaz.pdf15,85 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.