Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/78760
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Oliveira, Cláudio Lucas Nunes de | - |
dc.contributor.author | Costa, Damião Ferreira da Silva | - |
dc.date.accessioned | 2024-11-06T15:07:35Z | - |
dc.date.available | 2024-11-06T15:07:35Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | COSTA, D. F. S. Comportamentos reológicos de materiais macios usando modelagem no contínuo. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024. | pt_BR |
dc.identifier.uri | http://repositorio.ufc.br/handle/riufc/78760 | - |
dc.description.abstract | This work presents an investigation into the rheological behavior of soft materials using the continuum approach and numerical simulation techniques through the Finite Element Method (FEM). The research was divided into two main parts: the first focused on nanoindentation tests to evaluate the finite size effect and the influence of substrate stiffness on the measurement of the elastic properties of viscoelastic and elastic samples. Three indenter geometries (conical, spherical, and cylindrical) were considered, indicating that the conical indenter provides more robust measurements, especially when analyzing variations in sample height and substrate stiffness. The second part of the study explored the influence of fractal surfaces, specifically the Koch curve, on determining the Young's modulus of elastic materials. Samples with fractal surfaces were simulated under two different configurations, referred to as Up and Down. The results showed that the presence of fractal surfaces can increase or decrease the obtained Young's modulus, especially in thinner samples that have fractal surfaces in the Up orientation. Additionally, it was observed that although stiffness and Young's modulus decrease with the increase in the sample's base length L, the influence of fractality remains constant. FEM is an effective tool for the numerical modeling of soft materials, allowing for detailed analysis of finite-size effects and surface complexity on the mechanical properties of such materials. This study provides important insights for experiment design and result interpretation in contexts where complex and rough surfaces are present. For future work, it is suggested that the simulations be expanded to three-dimensional geometries and phenomena such as drag force in deformable solids immersed in fluids be investigated. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Comportamentos reológicos de materiais macios usando modelagem no contínuo | pt_BR |
dc.type | Tese | pt_BR |
dc.description.abstract-ptbr | Este trabalho apresenta uma investigação sobre o comportamento reológico de materiais macios utilizando a abordagem do contínuo e técnicas de simulação numérica através do Método dos Elementos Finitos (MEF). A pesquisa foi dividida em duas partes principais: a primeira focou em testes de nanoindentação para avaliar o efeito de tamanho finito e a influência da rigidez do substrato na medição das propriedades elásticas de amostras viscoelásticas e elásticas. Três geometrias de indentadores (cônico, esférico e cilíndrico) foram consideradas, com resultados indicando que o indentador cônico fornece medidas mais robustas, especialmente quando se analisam variações na altura das amostras e na rigidez do substrato. A segunda parte do estudo explorou a influência de superfícies fractais, especificamente a curva de Koch, na determinação do módulo de Young de materiais elásticos. Foram simuladas amostras com superfícies fractais sob duas configurações diferentes, denominadas Up e Down. Os resultados mostraram que a presença de superfícies fractais pode aumentar ou diminuir o módulo de Young obtido, especialmente em amostras mais finas que possuem superfícies fractais na orientação Up. Além disso, foi observado que, embora a rigidez e o módulo de Young diminuam com o aumento do comprimento da base L da amostra, a influência da fractalidade permanece constante. O MEF é uma ferramenta eficaz para a modelagem numérica de materiais macios, permitindo uma análise detalhada dos efeitos de tamanho finito e da complexidade da superfície nas propriedades mecânicas de tais materiais. Este estudo oferece informações importantes para a montagem de experimentos e a interpretação de resultados em contextos onde superfícies complexas e rugosas estão presentes. Para trabalhos futuros, sugere-se a expansão das simulações para geometrias tridimensionais e a investigação do efeito da força de arrasto em sólidos deformáveis imersos em fluidos. | pt_BR |
dc.subject.ptbr | Método dos elementos finitos | pt_BR |
dc.subject.ptbr | Mecânica dos sólidos | pt_BR |
dc.subject.ptbr | Reologia | pt_BR |
dc.subject.ptbr | Módulo de Young | pt_BR |
dc.subject.ptbr | Efeitos de borda | pt_BR |
dc.subject.en | Finite Element Method | pt_BR |
dc.subject.en | Solid Mechanics | pt_BR |
dc.subject.en | Rheology | pt_BR |
dc.subject.en | Young’s Modulus | pt_BR |
dc.subject.en | Edge Effects | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA | pt_BR |
local.date.available | 2024 | - |
Aparece nas coleções: | DFI - Teses defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2024_tese_dfscosta.pdf | 15,78 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.