Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/77397
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLemos, José de Jesus Sousa-
dc.contributor.authorBezerra, Filomena Nádia Rodrigues-
dc.contributor.authorPaiva, Elizama Cavalcante-
dc.contributor.authorIpolito, Antonia Leudiane Mariano-
dc.contributor.authorSousa, Erika Costa-
dc.contributor.authorCosta Filho, João da-
dc.date.accessioned2024-07-29T18:35:25Z-
dc.date.available2024-07-29T18:35:25Z-
dc.date.issued2024-
dc.identifier.citationLEMOS, Jose De Jesus Sousa; BEZERRA, Filomena Nadia Rodrigues ; PAIVA, Elizama Cavalcante ; IPOLITO, Antonia Leudiane Mariano ; SOUSA, Erika Costa ; COSTA FILHO, Joao Da. Temporal rainfall variations induce forecast errors in rainfed agriculture in the Brazilian State of CearÃ, Brazil. International Journal of Business Administration, Ontario, v. 15, n.3, p. 36-48, 2024.pt_BR
dc.identifier.issn1923-4007-
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/77397-
dc.description.abstractThe research aims to: a) assess the instabilities associated with rainfall and the variables that define the production of rice, beans, cassava and corn in the state of Ceará between 1945 and 2020; b) estimate models that can be used to make projections of harvested areas, yields and prices for these crops between 1945 and 2020; c) assess the impact of rainfall on the estimated forecasting models; d) assess how rainfall affects the likelihood of farmers making forecasts of the variables that define agricultural production. Rainfall data was obtained from the National Centers for Environmental Information (NOAA). Crop yield data came from the Brazilian Institute of Geography and Statistics (IBGE). Instabilities were measured by the coefficients of variation. ARIMA models (autoregressive, integrated and moving average model) were used to make the forecasts. The hypothesis that the residuals generated by the models are influenced by annual rainfall was tested. The results showed high instabilities in annual rainfall, which spread to the variables that define crop yields. Parsimonious and robust adjustments were obtained from a statistical point of view and it was shown that the errors generated, including their magnitudes, in the models used to forecast all the variables that define bean and corn yields, harvested areas and rice yields, as well as cassava yields, are influenced by annual rainfall in Ceará between 1945 and 2020.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Journal of Business Administrationpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleTemporal rainfall variations induce forecast errors in rainfed agriculture in the Brazilian State of Ceará, Brazilpt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enTemporal rainfall variations induce forecast errors in rainfed agriculture in the Brazilian State of Ceará, Brazilpt_BR
dc.subject.enOccurrence of droughtspt_BR
dc.subject.enRainfall instabilitypt_BR
dc.subject.enBrazilian semi-arid regionpt_BR
dc.subject.enSynergy of eventspt_BR
dc.subject.enPotential evapotranspirationpt_BR
dc.subject.cnpqCNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAOpt_BR
local.author.orcidhttps://orcid.org/0000-0002-4496-8190pt_BR
local.author.orcidhttps://orcid.org/0000-0002-4625-4474pt_BR
local.author.orcidhttps://orcid.org/0000-0003-3267-2779pt_BR
local.author.lattes http://lattes.cnpq.br/5498218246827183pt_BR
local.author.latteshttp://lattes.cnpq.br/0332719484661039pt_BR
local.author.latteshttp://lattes.cnpq.br/2236239894671202pt_BR
local.author.latteshttp://lattes.cnpq.br/8132763986254099pt_BR
local.author.latteshttp://lattes.cnpq.br/5597065736818875pt_BR
local.author.latteshttp://lattes.cnpq.br/0203969106474687pt_BR
local.date.available2024-
Aparece nas coleções:DEA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2024_art_jjslemos.pdf504,8 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.