Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/76101
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Maciel, Jeanny da Silva | - |
dc.contributor.author | Ferreira, Carlos Rhamon do Nascimento | - |
dc.date.accessioned | 2024-02-08T18:48:57Z | - |
dc.date.available | 2024-02-08T18:48:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | FERREIRA, Carlos Rhamon do Nascimento. Hidrogéis injetáveis à base de goma guar e carboxietilquitosana reforçados com nanopartículas de vidro bioativo com potencial aplicação na engenharia de tecidos. 2024. 116 f. Tese (Doutorado em Química) - Universidade Federal do Ceará, Fortaleza, 2024. | pt_BR |
dc.identifier.uri | http://repositorio.ufc.br/handle/riufc/76101 | - |
dc.description.abstract | Hydrogels are a class of polymeric materials that constitute a promising application in tissue engineering and regenerative medicine due to their similarities with the natural extracellular matrix of tissues. Injectable hydrogels constitute a subclass of hydrogels that can be applied directly to tissue injury to fill and support tissue regeneration. One way to provide greater mechanical resistance to hydrogels is to add reinforcing agents, such as bioactive glass nanoparticles, which in addition to being biodegradable, biocompatible and osteoconductive, induce the formation of a layer of carbonated hydroxyapatite at the biomaterial/tissue interface. Initially, the guar gum depolymerized by the acid-ethanol treatment was oxidized to different degrees of oxidation (30, 50 and 70%) using sodium periodate and the chitosan was carboxyethylated from the Michael addition reaction with acrylic acid, becoming soluble. in a wide pH range. The main techniques used to characterize polysaccharides and their modifications were: FTIR, 1H NMR and GPC. The obtained bioactive glass nanoparticles had an average size of 138 ± 29 nm, spherical shape with smooth morphology and a uniform size distribution. The formulated hydrogels had gelation times of 37 to 97 seconds, increasing with the presence of bioactive glass. The injectable hydrogels had excellent injectability/syringability without interrupting the flow or obstructing the cannula. The SEM showed that the hydrogels are formed by a porous and interconnected network with average pore values between 123 ± 5 to 356 ± 15 µm and with a porosity of 66.3 ± 1.4 to 87.4 ± 2.1 (%); decreasing their values with the presence of bioactive glass. Degradation studies in PBS showed that the hydrogels showed a slow loss of mass over a period of 28 days (with an average degradation of 30 to 50% of their initial mass) and the swelling of the samples showed controlled values during a period of 180 minutes. (ranging from 30 to 45% of its initial mass). In vitro cytotoxicity assays using two cell lines (fibroblasts and osteoblasts) confirmed the non-toxic and biocompatible nature of the studied formulations. Thus, it is possible to verify that hydrogels have potential application in tissue regeneration, as they show ease in manipulating their studied properties. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Hidrogéis injetáveis à base de goma guar e carboxietilquitosana reforçados com nanopartículas de vidro bioativo com potencial aplicação na engenharia de tecidos | pt_BR |
dc.type | Tese | pt_BR |
dc.contributor.co-advisor | Feitosa, Judith Pessoa de Andrade | - |
dc.description.abstract-ptbr | Hidrogéis são uma classe de materiais poliméricos que constituem uma promissora aplicação em engenharia de tecidos e medicina regenerativa por apresentar semelhanças com a matriz extracelular natural dos tecidos. Os hidrogéis injetáveis constituem uma subclasse de hidrogéis que podem ser aplicados diretamente na lesão tecidual para preencher e sustentar a regeneração do tecido. Uma forma de proporcionar maior resistência mecânica aos hidrogéis é adicionar agentes de reforço, como nanopartículas de vidro bioativo, que além de serem biodegradáveis, biocompatíveis e osteocondutores, induzem a formação de uma camada de hidroxiapatita carbonatada na interface biomaterial/tecido. Inicialmente a goma guar despolimerizada pelo tratamento ácido-etanol foi oxidada em diferentes graus de oxidação (30, 50 e 70%) utilizando periodato de sódio e a quitosana foi carboxietilada a partir da reação de adição de Michael com ácido acrílico, passando a ser solúvel em ampla faixa de pH. As principais técnicas utilizadas para caracterizar os polissacarídeos e suas modificações foram: FTIR, RMN 1H e GPC. As nanopartículas de vidro bioativo obtidas tiveram tamanho médio de 138 ± 29 nm, forma esférica com morfologia lisa e uma distribuição de tamanho uniforme. Os hidrogéis formulados tiveram tempos de gelificação de 37 a 97 segundos, aumentando com a presença do vidro bioativo. Os hidrogéis injetáveis tiveram uma excelente injetabilidade/seringabilidade sem apresentar interrupção do fluxo e sem obstrução da cânula. O MEV mostrou que os hidrogéis são formados por uma rede porosa e interconectada com valores médios de poros entre 123 ± 5 a 356 ± 15 µm e com uma porosidade de 66,3 ± 1,4 a 87,4 ± 2,1 (%); diminuindo seus valores com a presença do vidro bioativo. Os estudos de degradação em PBS mostraram que os hidrogéis apresentam uma perda de massa lenta durante o período de 28 dias (com degradação média de 30 a 50% de sua massa inicial) e o intumescimento das amostras apresentou valores controlados durante o tempo de 180 minutos (variando de 30 a 45% da sua massa inicial). Os ensaios de citotoxicidade in vitro utilizando duas linhagens de células (fibroblastos e osteoblasto) confirmaram a natureza não-tóxica e biocompatível das formulações estudadas. Assim é possível verificar que os hidrogéis apresentam potencial aplicação na regeneração de tecidos, visto que mostram uma facilidade na manipulação de suas propriedades estudadas. | pt_BR |
dc.title.en | Injectable hydrogels based on guar gum and carboxyethylchitosan reinforced with bioactive glass nanoparticles with potential application in tissue engineering | pt_BR |
dc.subject.ptbr | Hidrogéis injetáveis | pt_BR |
dc.subject.ptbr | Quitosana | pt_BR |
dc.subject.ptbr | Goma guar | pt_BR |
dc.subject.ptbr | Base de Schiff | pt_BR |
dc.subject.en | Injectable hydrogels | pt_BR |
dc.subject.en | Chitosan | pt_BR |
dc.subject.en | Guar gum | pt_BR |
dc.subject.en | Schiff Base | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA | pt_BR |
local.author.orcid | https://orcid.org/0000-0003-0453-9671 | pt_BR |
local.author.lattes | https://lattes.cnpq.br/3162192632833559 | pt_BR |
local.advisor.orcid | https://orcid.org/0000-0001-5916-1747 | pt_BR |
local.advisor.lattes | http://lattes.cnpq.br/9484470414986626 | pt_BR |
local.co-advisor.orcid | https://orcid.org/0000-0002-4466-0452 | pt_BR |
local.co-advisor.lattes | http://lattes.cnpq.br/5607366782144472 | pt_BR |
local.date.available | 2024 | - |
Aparece nas coleções: | DQOI - Teses defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2024_tese_crnferreira.pdf | 3,67 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.