Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73996
Tipo: Artigo de Periódico
Título: High spatial resolution data obtained by GNSS and RPAS to assess islets flood-prone scenarios for 2100
Autor(es): Gonçalves, Rodrigo Mikosz
Pontes, Júlia Isabel
Vasconcellos, Flávia Helena Manhães
Ferreira, Lígia Albuquerque de Alcântara
Queiroz, Heithor Alexandre de Araújo
Sousa, Paulo Henrique Gomes de Oliveira
Palavras-chave: Flood;Sea level;Remotely piloted aircraft system (RPAS);Enchente;Nível do mar
Data do documento: 2023
Instituição/Editor/Publicador: Applied Geography
Citação: GONÇALVES, Rodrigo Mikosz; PONTES, Júlia Isabel; VASCONCELLOS, Flávia Helena Manhães; FERREIRA, Lígia Albuquerque de Alcântara; QUEIROZ, Heithor Alexandre de Araújo; SOUSA, Paulo Henrique Gomes de Oliveira. High spatial resolution data obtained by GNSS and RPAS to assess islets flood-prone scenarios for 2100. Applied Geography, United States, v. 150, p. 102817, 2023. Disponível em: https://doi.org/10.1016/j.apgeog.2022.102817. Acesso em 17 ago. 2023.
Abstract: The flood-prone scenarios assessment contributes to detecting natural and climate change trends and it is a crucial component of integrated coastal zone management. However, the data acquisition with a high spatial and temporal resolution for a local scale is still a challenge considering that sea-level rise projections are usually represented by global scales. This contribution uses locally acquired topographic data for a flood-prone simulation (2100), presents a flood depth-damage function, and points out several obstacles for sea-level rise simulations. The input data is based on GNSS and RPAS surveys. The results showed multimedia videos and maps containing the optimistic, intermediate, and pessimistic scenarios for 2100. In the pessimistic scenario (0.80 m elevation), 45% of the vegetation and 67% of the islet would flood. The results showed the importance and barriers for flood-prone simulations. It is still necessary to advance in developing new methods able to combine multiple parameters, particularly for local and regional scales highlighting high spatial data-set to properly represent local impacts.
URI: http://www.repositorio.ufc.br/handle/riufc/73996
ISSN: 0747-5160
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_rmgoncalves.pdf4,5 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.