Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73440
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMotta, Pedro Crosara-
dc.contributor.authorCortez, Paulo César-
dc.contributor.authorSilva, Bruno Riccelli dos Santos-
dc.contributor.authorYang, Guang-
dc.contributor.authorAlbuquerque, Victor Hugo Costa de-
dc.date.accessioned2023-07-11T13:28:07Z-
dc.date.available2023-07-11T13:28:07Z-
dc.date.issued2023-
dc.identifier.citationMOTTA, Pedro Crosara; CORTEZ, Paulo César; SILVA, Bruno Riccelli dos Santos; YANG, Guang; ALBUQUERQUE, Victor Hugo Costa de. Automatic COVID-19 and common-acquired pneumonia diagnosis using chest ct scans. Bioengineering, [s.l.], v. 10, n. 5, p. 529, 2023.pt_BR
dc.identifier.issn2306-5354-
dc.identifier.otherDOI: https://doi.org/10.3390/bioengineering10050529-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/73440-
dc.description.abstractEven with over 80% of the population being vaccinated against COVID-19, the disease continues to claim victims. Therefore, it is crucial to have a secure Computer-Aided Diagnostic system that can assist in identifying COVID-19 and determining the necessary level of care. This is especially important in the Intensive Care Unit to monitor disease progression or regression in the fight against this epidemic. To accomplish this, we merged public datasets from the literature to train lung and lesion segmentation models with five different distributions. We then trained eight CNN models for COVID-19 and Common-Acquired Pneumonia classification. If the examination was classified as COVID-19, we quantified the lesions and assessed the severity of the full CT scan. To validate the system, we used Resnetxt101 Unet++ and Mobilenet Unet for lung and lesion segmentation, respectively, achieving accuracy of 98.05%, F1-score of 98.70%, precision of 98.7%, recall of 98.7%, and specificity of 96.05%. This was accomplished in just 19.70 s per full CT scan, with external validation on the SPGC dataset. Finally, when classifying these detected lesions, we used Densenet201 and achieved accuracy of 90.47%, F1-score of 93.85%, precision of 88.42%, recall of 100.0%, and specificity of 65.07%. The results demonstrate that our pipeline can correctly detect and segment lesions due to COVID-19 and Common-Acquired Pneumonia in CT scans. It can differentiate these two classes from normal exams, indicating that our system is efficient and effective in identifying the disease and assessing the severity of the condition.pt_BR
dc.language.isoenpt_BR
dc.publisherBioengineeringpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCOVID-19pt_BR
dc.subjectComputer-Aided Diagnosticpt_BR
dc.subjectCNNpt_BR
dc.subjectSegmentationpt_BR
dc.subjectClassificationpt_BR
dc.subjectMedical imagept_BR
dc.subjectCT scanpt_BR
dc.subjectDiagnóstico auxiliado por computadorpt_BR
dc.subjectSegmentaçãopt_BR
dc.subjectClassificaçãopt_BR
dc.subjectImagem médicapt_BR
dc.titleAutomatic COVID-19 and common-acquired pneumonia diagnosis using chest ct scanspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_pcmotta.pdf7,32 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.