Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73437
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Daniel Santos da-
dc.contributor.authorNascimento, Caio dos Santos-
dc.contributor.authorDamaševičius, Robertas-
dc.contributor.authorJagatheesaperumal, Senthil Kumar-
dc.contributor.authorAlbuquerque, Victor Hugo Costa de-
dc.contributor.authorLeite, Jose Alberto Dias-
dc.contributor.authorAstolfi, Rodrigo Schroll-
dc.contributor.authorGuedes, Ingrid S.-
dc.date.accessioned2023-07-11T13:16:36Z-
dc.date.available2023-07-11T13:16:36Z-
dc.date.issued2023-
dc.identifier.citationSILVA, Daniel Santos da; NASCIMENTO, Caio dos Santos; DAMAŠEVIČIUS, Robertas; JAGATHEESAPERUMAL, Senthil Kumar; ALBUQUERQUE, Victor Hugo Costa de; LEITE, Jose Alberto Dias; ASTOFI, Rodrigo Schroll; GUEDES, Ingrid S.. Computer-Aided ankle ligament injury diagnosis from magnetic resonance images using machine learning techniques. Sensors, [s.l.], v. 23, n. 3, p. 1565, 2023.pt_BR
dc.identifier.issn1424-8220-
dc.identifier.otherDOI: https://doi.org/10.3390/s23031565-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/73437-
dc.description.abstractAnkle injuries caused by the Anterior Talofibular Ligament (ATFL) are the most common type of injury. Thus, finding new ways to analyze these injuries through novel technologies is critical for assisting medical diagnosis and, as a result, reducing the subjectivity of this process. As a result, the purpose of this study is to compare the ability of specialists to diagnose lateral tibial tuberosity advancement (LTTA) injury using computer vision analysis on magnetic resonance imaging (MRI). The experiments were carried out on a database obtained from the Vue PACS–Carestream software, which contained 132 images of ATFL and normal (healthy) ankles. Because there were only a few images, image augmentation techniques was used to increase the number of images in the database. Following that, various feature extraction algorithms (GLCM, LBP, and HU invariant moments) and classifiers such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF) were used. Based on the results from this analysis, for cases that lack clear morphologies, the method delivers a hit rate of 85.03% with an increase of 22% over the human expert-based analysis.pt_BR
dc.language.isoenpt_BR
dc.publisherSensorspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAnkle ligament injurypt_BR
dc.subjectMRIpt_BR
dc.subjectData augmentationpt_BR
dc.subjectFeature extractionpt_BR
dc.subjectLesão ligamentar do tornozelopt_BR
dc.subjectAumento de dadospt_BR
dc.subjectExtração de recursospt_BR
dc.subjectRessonância magnéticapt_BR
dc.titleComputer-Aided ankle ligament injury diagnosis from magnetic resonance images using machine learning techniquespt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_rsastolfi.pdf1,84 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.