Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73423
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRamalho, Geraldo Luis Bezerra-
dc.contributor.authorRebouças Filho, Pedro Pedrosa-
dc.contributor.authorMedeiros, Fátima Nelsizeuma Sombra de-
dc.contributor.authorCortez, Paulo César-
dc.date.accessioned2023-07-10T17:14:53Z-
dc.date.available2023-07-10T17:14:53Z-
dc.date.issued2014-
dc.identifier.citationRAMALHO, Geraldo Luis Bezerra; REBOUÇAS FILHO, Pedro Pedrosa; MEDEIROS, Fátima Nelsizeuma Sombra de; CORTEZ, Paulo César. Lung disease detection using feature extraction and extreme learning machine. Revista Brasileira de Engenharia Biomédica, [s.l.], v. 30, n. 3, p. 207-214, 2014.pt_BR
dc.identifier.issn1984-7742-
dc.identifier.otherDOI: https://doi.org/10.1590/rbeb.2014.019-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/73423-
dc.description.abstractIntroduction: The World Health Organization estimates that by 2030 the Chronic Obstructive Pulmonary Disease (COPD) will be the third leading cause of death worldwide. Computerized Tomography (CT) images of lungs comprise a number of structures that are relevant for pulmonary disease diagnosis and analysis. Methods: In this paper, we employ the Adaptive Crisp Active Contour Models (ACACM) for lung structure segmentation. And we propose a novel method for lung disease detection based on feature extraction of ACACM segmented images within the cooccurrence statistics framework. The spatial interdependence matrix (SIM) synthesizes the structural information of lung image structures in terms of three attributes. Finally, we perform a classifi cation experiment on this set of attributes to discriminate two types of lung diseases and health lungs. We evaluate the discrimination ability of the proposed lung image descriptors using an extreme learning machine neural network (ELMNN) comprising 4-10 neurons in the hidden layer and 3 neurons in the output layer to map each pulmonary condition. This network was trained and validated by applying a holdout procedure. Results: The experimental results achieved 96% accuracy demonstrating the effectiveness of the proposed method on identifying normal lungs and diseases as COPD and fi brosis. Conclusion: Our results lead to conclude that the method is suitable to integrate clinical decision support systems for pulmonary screening and diagnosispt_BR
dc.language.isoenpt_BR
dc.publisherRevista Brasileira de Engenharia Biomédicapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLung diseasespt_BR
dc.subjectChest CT imagespt_BR
dc.subjectActive contour modelspt_BR
dc.subjectSpatial interdependence matrixpt_BR
dc.subjectFeature extractionpt_BR
dc.subjectImage segmentationpt_BR
dc.subjectDoenças pulmonarespt_BR
dc.subjectImagens de TC de tóraxpt_BR
dc.subjectModelos de contorno ativopt_BR
dc.subjectMatriz de interdependência espacialpt_BR
dc.subjectExtração de recursospt_BR
dc.subjectSegmentação de imagempt_BR
dc.titleLung disease detection using feature extraction and extreme learning machinept_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2014_art_glbramalho.pdf1,12 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.