Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/71891
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAbreu, Levi Ribeiro de-
dc.contributor.authorPrata, Bruno de Athayde-
dc.contributor.authorGomes, Allan Costa-
dc.contributor.authorSantos, Stéphanie Alencar Braga dos-
dc.contributor.authorNagano, Marcelo Seido-
dc.date.accessioned2023-04-26T13:45:56Z-
dc.date.available2023-04-26T13:45:56Z-
dc.date.issued2022-
dc.identifier.citationABREU, Levi Ribeiro de; PRATA, Bruno de Athayde; GOMES, Allan Costa; SANTOS, Stéphanie Alencar Braga; NAGANO, Marcelo Seido. A novel BRKGA for the customer order scheduling with missing operations to minimize total tardiness. Swarm and Evolutionary Computation, [S. l.], v. 75, n. 101149, p. 1-13, 2022.pt_BR
dc.identifier.issn2210-6510-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/71891-
dc.description.abstractWe introduce a new variant of the customer order scheduling problem with missing operations to minimize total tardiness. This problem arises in the pharmaceutical industry, more specifically in physical–chemical analysis processes. Since each sample must be processed in some specific machines, we have missing operations. Given the NP-hardness of the problem, we present approximate algorithms to solve large-sized instances. First, we propose an innovative size-reduction matheuristic for a scheduling problem with due dates. This approach is based on partitioning the decision variables considering due dates and a dispatch rule. Furthermore, we develop a novel Biased Random Key Genetic Algorithm (BRKGA) that considers an efficient local search as 2-opt best improvement with swap neighborhood and a parameter-free restart procedure which restarts the search if the quality of the worst and best solutions were equal, minimizing the amount of parameters to be defined by the BRKGA. We perform computational experiments on 640 test instances to evaluate the proposed solution approaches. The results indicate the superiority of BRKGA compared to the competitive algorithms for order scheduling and its recent variants. In all set of instances, the novel BRKGA performed better than benchmarking methods and mathematical programming models, with average relative deviation index regarding best results as lower as 0.15%. Computational results point to the capacity of the proposed approaches to solve large-sized problems.pt_BR
dc.language.isoenpt_BR
dc.publisherSwarm and Evolutionary Computationpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCustomer order schedulingpt_BR
dc.subjectAssembly schedulingpt_BR
dc.subjectGenetic algorithmspt_BR
dc.subjectMissing operationspt_BR
dc.subjectMatheuristicspt_BR
dc.titleA novel BRKGA for the customer order scheduling with missing operations to minimize total tardinesspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEHA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_art_lrabreu4.pdf2,08 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.