Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70718
Tipo: Artigo de Evento
Título: Robust echo state network for recursive system identification
Autor(es): Bessa, Renan
Barreto, Guilherme de Alencar
Palavras-chave: Online system identification;Recurrent neural networks;Echo state network;Recursive estimation;Robustness to outliers
Data do documento: 2019
Instituição/Editor/Publicador: International Work-Conference on Artificial Neural Networks
Citação: BESSA, R.; BARRETO, G. A. Robust echo state network for recursive system identification. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 15., 2019, Grã Canária. Anais... Grã Canária: Springer, 2019. p. 1-12.
Abstract: The use of recurrent neural networks in online system identification is very limited in real-world applications, mainly due to the propagation of errors caused by the iterative nature of the prediction task over multiple steps ahead. Bearing this in mind, in this paper, we revisit design issues regarding the robustness of the echo state network (ESN) model in such online learning scenarios using a recursive estimation algorithm and an outlier robust-variant of it. By means of a comprehensive set of experiments, we show that the performance of the ESN is dependent on the adequate choice of the feedback pathways and that the prediction instability is amplified by the norm of the output weight vector, an often neglected issue in related studies.
URI: http://www.repositorio.ufc.br/handle/riufc/70718
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_gabarreto.pdf447,06 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.