Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70705
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Aguayo, Leonardo | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.date.accessioned | 2023-02-09T16:38:03Z | - |
dc.date.available | 2023-02-09T16:38:03Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | AGUAYO, L.; BARRETO, G. A. Novelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigms. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 10., 2008, Salvador. Anais... Salvador: IEEE, 2008. p. 129-134. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70705 | - |
dc.description.abstract | This paper addresses the issue of novelty or anomaly detection in time series data. The problem may be interpreted as a spatio-temporal classification procedure where current time series observation is labeled as normal or novel/abnormal according to a decision rule. In this work, the construction of the decision rules is formulated by means of two different self-organizing neural network (SONN) paradigms: one builds decision thresholds from quantization errors and the other one from prediction errors. Simulations with synthetic and real-world data show the feasibility of the two approaches. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Brazilian Symposium on Neural Networks | pt_BR |
dc.title | Novelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigms | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2008_eve_gabarreto.pdf | 287,95 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.