Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70705
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAguayo, Leonardo-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T16:38:03Z-
dc.date.available2023-02-09T16:38:03Z-
dc.date.issued2008-
dc.identifier.citationAGUAYO, L.; BARRETO, G. A. Novelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigms. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 10., 2008, Salvador. Anais... Salvador: IEEE, 2008. p. 129-134.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70705-
dc.description.abstractThis paper addresses the issue of novelty or anomaly detection in time series data. The problem may be interpreted as a spatio-temporal classification procedure where current time series observation is labeled as normal or novel/abnormal according to a decision rule. In this work, the construction of the decision rules is formulated by means of two different self-organizing neural network (SONN) paradigms: one builds decision thresholds from quantization errors and the other one from prediction errors. Simulations with synthetic and real-world data show the feasibility of the two approaches.pt_BR
dc.language.isoenpt_BR
dc.publisherBrazilian Symposium on Neural Networkspt_BR
dc.titleNovelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigmspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2008_eve_gabarreto.pdf287,95 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.