Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70677
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorAraújo, Aluízio Fausto Ribeiro-
dc.date.accessioned2023-02-09T14:02:06Z-
dc.date.available2023-02-09T14:02:06Z-
dc.date.issued2001-
dc.identifier.citationBARRETO, G. A.; ARAÚJO, A. F. R. A self-organizing NARX network and its application to prediction of chaotic time series. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 2001, Washington, D.C. Anais... Washington, D.C.: IEEE, 2001. p. 2144-2149.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70677-
dc.description.abstractThis paper introduces the concept of dynamic embedding manifold (DEM), which allows the Kohonen self-organizing map (SOM) to learn dynamic, nonlin-ear input-ouput mappings. The combination of the DEM concept with the SOM results in a new modelling technique that we called Vector-Quantized Temporal Associative Memory (VQTAM). We use VQTAM to propose an unsupervised neural algorithm called Self-Organizing N A R X (SONARX) network. The SONARX network is evaluated on the problem of modeling and prediction of three chaotic time series and compared with MLP, RBF and autoregressive (AR) models. Its is shown that SONARX exhibits similar performance when compared to MLP and RBF, while producing much better results than the AR model. The influence of the number of neurons, the memory order, the number of training epochs and the size of the training set in the final prediction error is also evaluated.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Joint Conference on Neural Networkspt_BR
dc.titleA self-organizing NARX network and its application to prediction of chaotic time seriespt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2001_eve_gabarreto.pdf525,97 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.