Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70665
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorFreire, Ananda Lima-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorVeloso, Marcus Vinicius Duarte-
dc.contributor.authorVarela, Antônio Themóteo-
dc.date.accessioned2023-02-09T13:09:12Z-
dc.date.available2023-02-09T13:09:12Z-
dc.date.issued2009-
dc.identifier.citationBARRETO, G. A. et al. Short-term memory mechanisms in neural network learning of robot navigation tasks: a case study. In: LATIN AMERICAN ROBOTICS SYMPOSIUM, 6., 2009, Valparaíso. Anais... Valparaíso: IEEE, 2009. p. 1-6.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70665-
dc.description.abstractThis paper reports results of an investigation on the degree of influence of short-term memory mechanisms on the performance of neural classifiers when applied to robot navigation tasks. In particular, we deal with the well-known strategy of navigating by “wall-following”. For this purpose, four standard neural architectures (Logistic Perceptron, Multilayer Perceptron, Mixture of Experts and Elman network) are used to associate different spatiotemporal sensory input patterns with four predetermined action categories. All stages of the experiments - data acquisition, selection and training of the architectures in a simulator and their execution on a real mobile robot - are described. The obtained results suggest that the wall-following task, formulated as a pattern classification problem, is nonlinearly separable, a result that favors the MLP network if no memory of input patters are taken into account. If short-term memory mechanisms are used, then even a linear network is able to perform the same task successfully.pt_BR
dc.language.isoenpt_BR
dc.publisherLatin American Robotics Symposiumpt_BR
dc.titleShort-term memory mechanisms in neural network learning of robot navigation tasks: a case studypt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2009_eve_gabarreto.pdf1,05 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.