Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70633
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Rodrigo Dalvit Carvalho da-
dc.contributor.authorCoelho, David Nascimento-
dc.contributor.authorThé, George André Pereira-
dc.contributor.authorMendonça, Marcel Ribeiro-
dc.date.accessioned2023-02-08T18:43:17Z-
dc.date.available2023-02-08T18:43:17Z-
dc.date.issued2014-
dc.identifier.citationTHÉ, G. A. P. et al. Comparison between k-Nearest neighbors, self-organizing maps and optimum-path forest in the recognition of packages using image analysis by Zernike moments. In: INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS, 11., 2014, Juiz de Fora. Anais... Juiz de Fora: IEEE, 2014. p. 1-6.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70633-
dc.description.abstractRecognition of objects using an industrial image sensor is an important tool that has been motivated by the necessity of automatic recognition systems in the industrial automation. In this context, an interesting problem is the automatic image acquiring and a high reliability in objects classification. To this end, this paper presents a comparison between k-Nearest Neighbors Classifier using Euclidean, City Block, Cosine and Correlation distance metric, the Self- Organizing Map (SOM) - Artificial Neural Network (ANN) and the Optimum-Path Forest, for classification of images taken from a low-resolution industrial sensor. Classification performance has been compared in terms of extraction time and accuracy using image analysis by Zernike moments.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Conference on Industry Applicationspt_BR
dc.titleComparison between k-Nearest neighbors, self-organizing maps and optimum-path forest in the recognition of packages using image analysis by Zernike momentspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2014_eve_gapthe.pdf472,75 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.