Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69526
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorKhamidullina, Liana-
dc.contributor.authorAlmeida, André Lima Férrer de-
dc.contributor.authorHaardt, Martin Haardt-
dc.date.accessioned2022-11-25T14:22:20Z-
dc.date.available2022-11-25T14:22:20Z-
dc.date.issued2020-
dc.identifier.citationKHAMIDULLINA, L.; ALMEIDA, A. L. F.; HAARDT, M. Multilinear generalized singular value decomposition (ML-GSVD) with application to coordinated beamforming in multi-user MIMO systems. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2020, Barcelona. Anais... Barcelona: IEEE, 2020. p. 4587-4591.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69526-
dc.description.abstractIn this paper, we propose a new Multilinear Generalized Singular Value Decomposition (ML-GSVD) which allows to jointly factorize a set of matrices with one common dimension. The ML-GSVD is an extension of the Generalized Singular Value Decomposition (GSVD) for more than two matrices. In comparison with other approaches that extend the GSVD, the proposed tensor decomposition preserves the essential properties of the original GSVD, such as orthogonality of the second mode factor matrices. In this work, we introduce two algorithms to compute the ML-GSVD. In addition, we present an application of the ML-GSVD to compute the beamforming matrices for the multi-user MIMO downlink channel with more than two users in wireless communications.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Conference on Acoustics, Speech and Signal Processingpt_BR
dc.subjectTensor factorizationpt_BR
dc.subjectGeneralized SVDpt_BR
dc.subjectMultilinear GSVDpt_BR
dc.subjectBeamformingpt_BR
dc.titleMultilinear generalized singular value decomposition (ML-GSVD) with application to coordinated beamforming in multi-user MIMO systemspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_eve_alfalmeida.pdf480,56 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.