Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69526
Tipo: Artigo de Evento
Título : Multilinear generalized singular value decomposition (ML-GSVD) with application to coordinated beamforming in multi-user MIMO systems
Autor : Khamidullina, Liana
Almeida, André Lima Férrer de
Haardt, Martin Haardt
Palabras clave : Tensor factorization;Generalized SVD;Multilinear GSVD;Beamforming
Fecha de publicación : 2020
Editorial : International Conference on Acoustics, Speech and Signal Processing
Citación : KHAMIDULLINA, L.; ALMEIDA, A. L. F.; HAARDT, M. Multilinear generalized singular value decomposition (ML-GSVD) with application to coordinated beamforming in multi-user MIMO systems. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2020, Barcelona. Anais... Barcelona: IEEE, 2020. p. 4587-4591.
Abstract: In this paper, we propose a new Multilinear Generalized Singular Value Decomposition (ML-GSVD) which allows to jointly factorize a set of matrices with one common dimension. The ML-GSVD is an extension of the Generalized Singular Value Decomposition (GSVD) for more than two matrices. In comparison with other approaches that extend the GSVD, the proposed tensor decomposition preserves the essential properties of the original GSVD, such as orthogonality of the second mode factor matrices. In this work, we introduce two algorithms to compute the ML-GSVD. In addition, we present an application of the ML-GSVD to compute the beamforming matrices for the multi-user MIMO downlink channel with more than two users in wireless communications.
URI : http://www.repositorio.ufc.br/handle/riufc/69526
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_eve_alfalmeida.pdf480,56 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.