Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/69503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorres, Andrei Bosco Bezerra-
dc.contributor.authorAdriano Filho, José-
dc.contributor.authorRocha, Atslands Rego da-
dc.contributor.authorGondim, Rubens Sonsol-
dc.contributor.authorSouza, José Neuman de-
dc.date.accessioned2022-11-25T14:16:46Z-
dc.date.available2022-11-25T14:16:46Z-
dc.date.issued2017-
dc.identifier.citationROCHA, A. R. et al. Outlier detection methods and sensor data fusion for precision agriculture. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO UBÍQUA E PERVASIVA, 9., 2017, São Paulo. Anais... São Paulo: SBC, 2017. p. 928-937.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69503-
dc.description.abstractPrecision agriculture is a concept regarding the use of technology to increase production yield while preserving and optimizing resources. One of the means to achieve that goal is to use sensors to monitor crops and adjust the cultivation according to its needs. This paper compares different techniques for sensor data fusion and detection and removal of outliers from gathered data to improve sensors accuracy and to identify possible sensor malfunction. As a case study, we monitored an experimental crop of precocious dwarf cashew using soil moisture sensors. Combining generalized ESD method and a weighted outlier- robust Kalman filter generated the best result, leading to more accurate data.pt_BR
dc.language.isoenpt_BR
dc.publisherSimpósio Brasileiro de Computação Ubíqua e Pervasivapt_BR
dc.titleOutlier detection methods and sensor data fusion for precision agriculturept_BR
dc.typeArtigo de Eventopt_BR
Appears in Collections:DETE - Trabalhos apresentados em eventos

Files in This Item:
File Description SizeFormat 
2017_eve_arrocha.pdf1,14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.