Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/68333
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Braga, Arthur Plínio de Souza | - |
dc.contributor.author | Carvalho, André Carlos Ponce de Leon Ferreira de | - |
dc.contributor.author | Oliveira, João Fernando Gomes de | - |
dc.date.accessioned | 2022-09-16T19:17:17Z | - |
dc.date.available | 2022-09-16T19:17:17Z | - |
dc.date.issued | 2005 | - |
dc.identifier.citation | BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/68333 | - |
dc.description.abstract | A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Congress of Mechanical Engineering | pt_BR |
dc.subject | Dressing monitoring system | pt_BR |
dc.subject | Acoustic emission | pt_BR |
dc.subject | Neural network | pt_BR |
dc.title | Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DEEL - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2005_eve_apsbraga.pdf | 634,74 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.