Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/68241
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva, Leonária Araújo-
dc.contributor.authorAraújo, Lucas Benício Rodrigues-
dc.contributor.authorBezerra, Ana Karoliny Lemos-
dc.contributor.authorMurta, Arthur Hermont Fonseca-
dc.contributor.authorBabadopulos, Lucas Feitosa de Albuquerque Lima-
dc.contributor.authorMedeiros Júnior, Marcelo Silva-
dc.date.accessioned2022-09-15T15:04:21Z-
dc.date.available2022-09-15T15:04:21Z-
dc.date.issued2022-
dc.identifier.citationBABADOPULOS, L. F. A. L. et al. Modelagem preditiva de propriedades mecânicas em concretos reforçados com fibra de aço utilizando redes neurais artificiais. Ambiente Construído, vol. 22, n. 2, p. 215-232, abr./jun. 2022. DOI: 10.1590/s1678-86212022000200602pt_BR
dc.identifier.issn1678-8621-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/68241-
dc.description.abstractThe aim of this paper was to estimate the mechanical properties essential to the design of concrete structures through a reliable prediction model of the compressive, tensile and flexural strengths of concrete steel fiber reinforced concrete (CFRC) using Artificial Neural Networks (ANN), and also to evaluate the influence of the fiber content on these properties. The study used a database with 57 experimental studies from the literature, implementing a neural network model with 12 input variables, 1 output and 2 hidden layers with 16 neurons. The results obtained were a mean square error (MSE) of 22.63, 0.08 and 0.80, and a mean absolute error (MAE) of 3.64, 0.24 and 0.74, respectively, for the compressive, tensile and flexural strengths. The sensitivity analysis showed that there was a considerable increase in tensile and flexural strengths with the use of fibers, which was expected. The results confirmed the model's ability to reliably reproduce the mechanical properties of the CFRC.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherAmbiente Construídopt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectConcreto reforçado com fibra de aço (CRFA)pt_BR
dc.subjectPropriedades mecânicaspt_BR
dc.subjectRNApt_BR
dc.subjectAnálise de sensibilidadept_BR
dc.subjectDosagempt_BR
dc.titleModelagem preditiva de propriedades mecânicas em concretos reforçados com fibra de aço utilizando redes neurais artificiaispt_BR
dc.typeArtigo de Periódicopt_BR
dc.description.abstract-ptbrEste artigo teve como foco a estimativa de propriedades mecânicas essenciais à concepção de estruturas de concreto mediante um modelo confiável de predição da resistência à compressão, à tração e à flexão de concreto reforçado com fibra de aço (CRFA) utilizando redes neurais artificias (RNA), bem como avaliar a influência do teor de fibras nessas propriedades. A pesquisa utilizou um banco de dados com 57 estudos experimentais descritos na literatura, sendo implementado um modelo de rede neural com 12 variáveis de entrada, 1 de saída e 2 camadas ocultas com 16 neurônios. Como resultados, obtiveram-se as seguintes métricas indicadoras da qualidade do ajuste: um erro quadrático médio (MSE) de 22,63, 0,08 e 0,80, e um erro absoluto médio (MAE) de 3,64, 0,24 e 0,74 respectivamente para as resistências à compressão, à tração e à flexão. A análise da sensibilidade evidenciou que houve aumento considerável nas resistências à tração e à flexão com uso de fibras, o que é esperado. Os resultados confirmaram a capacidade de o modelo reproduzir de forma confiável as propriedades mecânicas do CRFA.pt_BR
dc.title.enPredictive modeling of the mechanical properties of concrete reinforced with steel fiber using artificial neural networkspt_BR
Aparece nas coleções:DECC - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_art_lfalbabadopulos.pdf988,61 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.