Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/67188
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMiron, Sebastian-
dc.contributor.authorZniyed, Yassine-
dc.contributor.authorBoyer, Rémy-
dc.contributor.authorAlmeida, André Lima Férrer de-
dc.contributor.authorFavier, Gérard-
dc.contributor.authorBrie, David-
dc.contributor.authorComon, Pierre-
dc.date.accessioned2022-07-18T17:18:46Z-
dc.date.available2022-07-18T17:18:46Z-
dc.date.issued2020-
dc.identifier.citationALMEIDA, A. L. F. et al. Tensor methods for multisensor signal processing. IET Signal Processing, vol. 14, n. 10, p. 693-709, 2020pt_BR
dc.identifier.issn1751-9683-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/67188-
dc.description.abstractOver the last two decades, tensor-based methods have received growing attention in the signal processing community. In this work, the authors proposed a comprehensive overview of tensor-based models and methods for multisensor signal processing. They presented for instance the Tucker decomposition, the canonical polyadic decomposition, the tensor-train decomposition (TTD), the structured TTD, including nested Tucker train, as well as the associated optimisation strategies. More precisely, they gave synthetic descriptions of state-of-the-art estimators as the alternating least square (ALS) algorithm, the high-order singular value decomposition (HOSVD), and of more advanced algorithms as the rectified ALS, the TT-SVD/TT-HSVD and the Joint dImensionally Reduction and Factor retrieval Estimator scheme. They illustrated the efficiency of the introduced methodological and algorithmic concepts in the context of three important and timely signal processing-based applications: the direction-of-arrival estimation based on sensor arrays, multidimensional harmonic retrieval and multiple-input–multiple-output wireless communication systems.pt_BR
dc.language.isoenpt_BR
dc.publisherIET Signal Processingpt_BR
dc.subjectTensor-Based methodspt_BR
dc.subjectMultisensor signal processpt_BR
dc.subjectTucker decompositionpt_BR
dc.subjectTensorspt_BR
dc.titleTensor methods for multisensor signal processingpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_alfalmeida.pdf1,66 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.