Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/63829
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLeite, Ana Raquel Sena-
dc.contributor.authorDantas Neto, Silvrano Adonias-
dc.date.accessioned2022-02-08T15:53:39Z-
dc.date.available2022-02-08T15:53:39Z-
dc.date.issued2020-
dc.identifier.citationLEITE, Ana Raquel Sena; DANTAS NETO, Silvrano Adonias. A predictive model for the peak shear strength of infilled soft rock joints developed with a multilayer perceptron. Soils and Rocks v. 43, n. 4, p. 575-589, oct.- dec. 2020.pt_BR
dc.identifier.issn1980-9743 vesão impressa-
dc.identifier.issn2675-5475 versão online-
dc.identifier.uriDOI: 10.28927/SR.434575-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/63829-
dc.description.abstractSeveral analytical methodologies help estimate the shear strength of rock discontinuities whose main limitations are the difficulty to obtain all necessary parameters to satisfactorily represent the boundary conditions and influence of infill materials. The objective of this study is to present a predictive model of peak shear strength for soft rock discontinuities developed making use of an artificial neural network known as multilayer perceptron. The model’s input variables are: normal stiffness; initial normal stress acting on the discontinuity; joint roughness coefficient (JRC); ratio t/a (fill thickness/asperity height); uniaxial compressive strength and the basic friction angle of the intact rock; and finally the internal friction angle of infill material. To do so, results from 115 direct shear tests, with different soft rock discontinuities conditions were used. The herein proposed ANN predictive model, with an architecture 7-20-1, have shown coefficient of correlation in training and validation of 99.8 % and 99 %, respectively. The results from the model satisfactorily fit the experimental data and were also able to represent the influence of the input variables on the peak shear strength of soft rock discontinuities for different infill and boundary conditions.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherSchool of Engineering of the Federal University of Rio de Janeiro; the Brazilian Association for Soil Mechanics and Geotechnical Engineering - https://www.soilsandrocks.com/index.phppt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectPeak shear strengthpt_BR
dc.subjectSoft rock discontinuitiespt_BR
dc.titleA predictive model for the peak shear strength of infilled soft rock joints developed with a multilayer perceptronpt_BR
dc.typeArtigo de Eventopt_BR
dc.title.enA predictive model for the peak shear strength of infilled soft rock joints developed with a multilayer perceptronpt_BR
Aparece nas coleções:DEHA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_arsleite.pdf1,6 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.