Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/61784
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMarinho, Felipe Pinto-
dc.contributor.authorBrasil, Juliana Silva-
dc.contributor.authorAmorim Neto, Juarez Pompeu de-
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorSilva, Maria Eugênia Vieira da-
dc.contributor.authorLima, Ricardo José Pontes-
dc.date.accessioned2021-11-04T14:36:58Z-
dc.date.available2021-11-04T14:36:58Z-
dc.date.issued2019-
dc.identifier.citationMARINHO, Felipe Pinto; BRASIL, Juliana Silva; AMORIM NETO, Juarez Pompeu de; ROCHA, Paulo Alexandre Costa; SILVA, Maria Eugenia Vieira da; LIMA, Ricardo José Pontes. Solar irradiation forecasting by the application of five machine learning algorithms. In: IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, CILAMCE- ABMEC, XL., 11-14 nov. 2019, Natal/RN, Brazil. Proceedings […], Natal/RN, Brazil, 2019.pt_BR
dc.identifier.issn2675-6269-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/61784-
dc.description.abstractIn this work, the forecast of global solar irradiation for a one-day ahead forecast horizon was carried out using some machine learning models, namely: Minimal Learning Machine, Support Vector Machine, Random Forests, K- Nearest Neighbors and a regression tree with the application of a Bagging procedure. The Minimal Learning Machine algorithm is a relatively recent method based on the distance calculation between vectors and used for supervised learning purposes in both classification and regression problems. In addition, we used a data set with the presence of attributes (predictors) formed by exogenous variables (insolation, air temperature, precipitation, etc.), endogenous variables (solar irradiation historical data) and temporal variables (year, month and day of measurement) totalizing 44 attributes and 3254 observations. The root mean squared error and forecast skill obtained by applying the Minimal Learning Machine in the validation set were respectively 40.882 W/m² and 7.637 %, and the arithmetic mean of the root mean squared error in conjunction with the arithmetic mean of the forecast skill obtained by the use of the other models for the same validation set were 40.752 W/m² and 7.93 %. In this way, it can be drawn by the evaluation of the results that the Minimal Learning Machine presents a performance comparable to the classic machine learning methods. Furthermore, it presents the advantage in the training stage of using only a single adjustment parameter.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttp://www.abmec.org.br/congressos-e-outros-eventos/pt_BR
dc.subjectSolar irradiation forecastpt_BR
dc.subjectMachine learningpt_BR
dc.subjectGlobal irradiationpt_BR
dc.subjectMinimal learning machinept_BR
dc.subjectRenewable energypt_BR
dc.titleSolar irradiation forecasting by the application of five machine learning algorithmspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DEME - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_fpmarinho.pdf349,47 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.