Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/61740
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMaia, Marina Alves-
dc.contributor.authorRibeiro, Leonardo Gonçalves-
dc.contributor.authorParente Junior, Evandro-
dc.contributor.authorMelo, Antônio Macário Cartaxo de-
dc.date.accessioned2021-11-03T14:49:45Z-
dc.date.available2021-11-03T14:49:45Z-
dc.date.issued2019-
dc.identifier.citationMAIA, Marina Alves; RIBEIRO, Leonardo Gonçalves; PARENTE JÚNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Sequential approximate optimization using kriging and radial basis functions. In: IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, CILAMCE- ABMEC, XL., 11-14 nov. 2019, Natal/RN, Brazil. Proceedings[…], Natal/RN, Brazil, 2019.pt_BR
dc.identifier.issn2675-6269-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/61740-
dc.description.abstractDespite steady advance in computing power, the number of function evaluations in global optimization problems is often limited due to time-consuming analyses. In structural optimization problems, for instance, these analyses are typically carried out using the Finite Elements Method (FEM). This issue is especially critical when dealing with bio-inspired algorithms, where a high number of trial designs are usually required. Therefore, surrogate models are a valuable alternative to help reduce computational cost. With that in mind, present work proposes three Sequential Approximate Optimization (SAO) techniques. For that purpose, two surrogate models were chosen: the Radial Basis Functions (RBF) and Kriging. As for the infill criteria, three methodologies were investigated: the Expected Improvement, the Density Function and the addition of the global best. Two bio-inspired meta-heuristics were used in different stages of the optimization, namely Particle Swarm Optimization and Genetic Algorithm. To validate the proposed methodologies, a set of benchmarks functions were selected from the literature. Results showed a significant reduction in the number of high-fidelity evaluations. In terms of accuracy, efficiency, and robustness, Kriging excelled in most categories for all problems. Finally, these techniques were applied to the solution of a laminated composite plate, which demands a more complex analysis using FEM.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttp://www.abmec.org.br/congressos-e-outros-eventos/pt_BR
dc.subjectOptimizationpt_BR
dc.subjectSequential approximate optimizationpt_BR
dc.subjectRBFpt_BR
dc.subjectKrigingpt_BR
dc.titleSequential approximate optimization using kriging and radial basis functionspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DECC - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_mamaia.pdf1,47 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.