Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/48390
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSousa, Laise Lima de Carvalho-
dc.contributor.authorOliveira, Suzana Matos França de-
dc.contributor.authorVidal, Creto Augusto-
dc.contributor.authorCavalcante Neto, Joaquim Bento-
dc.date.accessioned2019-12-11T19:33:58Z-
dc.date.available2019-12-11T19:33:58Z-
dc.date.issued2019-
dc.identifier.citationSOUSA, Laise Lima de Carvalho; OLIVEIRA, Suzana Matos França de; VIDAL, Creto Augusto; CAVALCANTE NETO, Joaquim Bento. A one-dimensional least-square-consistent displacement-based meshless local petrov-galerkin method. Fortaleza: Departamento de Computação da Universidade Federal do Ceará, 2019. 30 p.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/48390-
dc.description.abstractIn recent years, the Meshless Local Petrov-Galerkin (MLPG) Method has attracted the attention of many researchers in solving several types of boundary value problems. This method is based on a local weak form, evaluated in local subdomains and does not require any mesh, either in the construction of the test and shape functions or in the integration process. However, the shape functions used in MLPG have complicated forms, which makes their computation and their derivative’s computation costly. In this work, using the Moving Least Square (MLS) Method, we dissociate the point where the approximating polynomial’s coefficients are optimized, from the points where its derivatives are computed. We argue that this approach not only is consistent with the underlying approximation hypothesis, but also makes computation of derivatives simpler. We apply our approach to a two-point boundary value problem, and perform several tests to support our claim. The results show that the proposed model is efficient, achieves good precision, and is attractive to be applied to other higher-dimension problems.pt_BR
dc.language.isoenpt_BR
dc.subjectMeshless methodpt_BR
dc.subjectMeshless local Petrov-Galerkin (MLPG) methodpt_BR
dc.subjectBoundary value problempt_BR
dc.titleA one-dimensional least-square-consistent displacement-based meshless local Petrov-Galerkin methodpt_BR
dc.title.alternativeRelatório Técnico do Departamento de Computação da Universidade Federal do Cearápt_BR
dc.typeRelatóriopt_BR
dc.title.enA one-dimensional least-square-consistent displacement-based meshless local Petrov-Galerkin methodpt_BR
Aparece nas coleções:CCRATEÚS - Relatório técnico

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_rel_llcsousa.pdf2,17 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.