Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/40986
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCamelo, Henrique do Nascimento-
dc.contributor.authorLucio, Paulo Sérgio-
dc.contributor.authorLeal Junior, João Bosco Verçosa-
dc.contributor.authorSantos, Daniel von Glehn dos-
dc.contributor.authorCarvalho, Paulo Cesar Marques de-
dc.date.accessioned2019-04-23T17:05:55Z-
dc.date.available2019-04-23T17:05:55Z-
dc.date.issued2018-
dc.identifier.citationCAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018.pt_BR
dc.identifier.issn2073-4433-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/40986-
dc.description.abstractThis work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics.pt_BR
dc.language.isoenpt_BR
dc.publisherAtmospherept_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia elétricapt_BR
dc.subjectEnergia eólicapt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectSérie temporalpt_BR
dc.subjectWind powerpt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectTime seriespt_BR
dc.subjectForecastpt_BR
dc.titleInnovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networkspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_art_pcmcarvalho.pdf2,96 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.