Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/40756
Tipo: Artigo de Periódico
Título: On the proof of the thin sandwich conjecture in arbitrary dimensions
Título em inglês: On the proof of the thin sandwich conjecture in arbitrary dimensions
Autor(es): Avalos, Rodrigo
Dahia, Fábio Leal de Melo
Romero, Carlos
Lira, Jorge Herbert Soares de
Palavras-chave: Física matemática;Sandwich Conjecture
Data do documento: 2017
Instituição/Editor/Publicador: Journal of Mathematical Physics
Citação: AVALOS, Rodrigo ; ROMERO, Carlos. ; DAHIA, Fábio Leal de Melo ; LIRA, Jorge Herbert Soares de . On the proof of the thin sandwich conjecture in arbitrary dimensions. Journal of Mathematical Physics, v. 58, p. 102502, 2017.
Abstract: On the proof of the Thin Sandwich Conjecture in arbitrary dimensions. In this paper we show the validity, under certain geometric conditions, of Wheeler's thin sandwich conjecture for higher dimensional theories of gravity. We extend the results shown by R. Bartnik and G. Fodor for the 3-dimensional case in two ways.On the one hand, we show that the results presented in Phys. Rev. D 48, 3596-3599 (1993) are valid in arbitrary dimensions, and on the other hand, we show that the geometric hypotheses needed for the proofs can always be satisfied, which constitutes in itself a new result for the 3-dimensional case. In this way, we show that on any compact n-dimensional manifold, n ≥ , there is an open set in the space of all possible initial data where the thin sandwich problem is well-posed.
URI: http://www.repositorio.ufc.br/handle/riufc/40756
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:DMAT - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_art_ravalos.pdf782,57 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.