Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/36899
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarbosa, Artur Mesquita-
dc.contributor.authorSantos, Emanuele-
dc.contributor.authorGomes, João Paulo P.-
dc.date.accessioned2018-11-06T15:58:14Z-
dc.date.available2018-11-06T15:58:14Z-
dc.date.issued2017-
dc.identifier.citationBARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506.pt_BR
dc.identifier.issn2316-6533-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/36899-
dc.description.abstractIn this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherSociedade Brasileira de Computaçãopt_BR
dc.subjectClassification with reject option paradigmpt_BR
dc.subjectIntervention activitiespt_BR
dc.subjectUndergraduate studentspt_BR
dc.titleA machine learning approach to identify and prioritize college students at risk of dropping outpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:PPGEB - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_ambarbosaesantosjppgomes.pdf242,14 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.