Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/36898
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarbosa, Artur Mesquita-
dc.contributor.authorAraújo Neto, Antônio Nilo-
dc.contributor.authorSantos, Emanuele-
dc.contributor.authorGomes, João Paulo P.-
dc.date.accessioned2018-11-06T15:45:44Z-
dc.date.available2018-11-06T15:45:44Z-
dc.date.issued2017-
dc.identifier.citationBarbosa, A. M.; Araújo Neto, A. N.; Santos, E.; Gomes, J. P. P. (2017)pt_BR
dc.identifier.issn2316-6533-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/36898-
dc.descriptionBARBOSA, Artur Mesquita; ARAÚJO NETO, Antônio Nilo de; SANTOS, Emanuele; GOMES, João Paulo P. Using learning analytics and visualization techniques to evaluate the structure of higher education curricula. In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1297-1306.pt_BR
dc.description.abstractIn this paper, we propose a data mining technique that evaluates a curriculum’s structure based on academic data collected from Computer Science students from 2005 to 2016. Our approach is based on the Synthetic Control Method (SCM), which builds a linear model describing the relation between courses based on student performance information. The proposed model is compared to a linear regression model with positive coefficients. In addition to providing the relation between courses, it can also be used to predict students’ grades in a specific course based on their previous grades. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the official structure and the structure found based on the data.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherSociedade Brasileira de Computaçãopt_BR
dc.subjectMining techniquept_BR
dc.subjectCurriculum’s structure evaluationpt_BR
dc.subjectSynthetic Control Method (SCM)pt_BR
dc.titleUsing learning analytics and visualization techniques to evaluate the structure of higher education curriculapt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:PPGEB - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_ambarbosaanaraujonetoesantosjppgomes.pdf492,73 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.