Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/34593
Type: Tese
Title: Propriedades eletrônicas do fosforeno
Authors: Sousa, Duarte José Pereira de
Advisor: Pereira Junior, João Milton
Keywords: Nanotecnologia;Propriedades eletrônicas;Fosforeno
Issue Date: 2018
Citation: SOUSA, D. J. P. Propriedades eletrônicas do fosforeno. 2018. 104 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
Abstract in Brazilian Portuguese: A procura por novos materiais com propriedades eletrônicas úteis tem levado a um crescente interesse na investigação de uma classe de sólidos lamelares que podem ser esfoliados até obter-se poucas camadas. Esses novos materiais bidimensionais (2D), que foram trazidos à atenção pela produção do grafeno em 2004, tem mostrado possuir propriedades que não são encontradas em sua forma bulk . Dentre esses materiais, uma atenção considerável tem sido direcionada ao fósforo negro, um alótropo do fósforo. Diferentemente do grafeno, o fósforo negro é um semicondutor, e sua alta mobilidade eletrônica torna-o um possível candidato para aplicações em dispositivos eletrônicos. Um aspecto importante da estrutura eletrônica do fósforo negro, por exemplo, é a dependência do gap de energias com o número de camadas. Experimentos mostraram que essa propriedade varia de ≈ 2.0 eV (para a monocamada) à ≈ 0.3 eV (para o bulk ), cobrindo uma faixa de frequência não observada anteriormente para outros materiais 2D. Recentemente, uma série de estudos obtiveram a estrutura de bandas do fósforo negro através de cálculos deprimeiros princípios, métodos k·p , assim como através dos modelos tight-binding e do contínuo. Os resultados mostraram que o fósforo negro apresenta uma grande anisotropia nas massa efetivas e, adicionalmente, que o gap pode ser modificado através da aplicação de potenciais externos. A maioria desses trabalhos não consideraram os efeitos das terminações das bordas e somente consideraram monocamadas e bicamadas de fósforo negro, devido às crescentes demandas computacionais com o aumento do número de camadas. Neste trabalho, propomos condições de contorno baseadas nas simetrias das subredes para nanofitas de fosforeno com bordas zigzag e armchair utilizando o modelo do contínuo e mostramos que os resultados obtidos para os espectros de energias exibem boa concordância com o modelo tight-binding de cinco hoppings. Como uma consequência, demonstramos que os gap s de energias para nanofitas com diferentes terminações possuem diferentes leis de escala. Também estendemos o modelo tight-binding e do contínuo para considerar amostras de fósforo negro com um número arbitrário de camadas. Mostramos que o sistema de N camadas acopladas pode ser aproximadamente mapeado em um sistema de N camadas desacopladas. Expressões para as bandas de menores energias de elétrons e buracos, assim como suas massa efetivas, são derivadas. Tal análise permite o cálculo direto dos níveis de Landau do sistema, como será discutido. A combinação dos métodos desenvolvidos aqui permitem o estudo geral de nanoestruturas de fósforo negro, tais como anéis quânticos, pontos quânticos, barras Hall e etc, de uma forma que é computacionalmente mais barata se comparada à outras aproximações.
Abstract: The search for new materials with useful electronic properties has led to an increasing interest on the investigation of a class of layered solids that can be produced as single or few layers. These new two-dimensional (2D) materials, which were first brought to attention by the production of graphene in 2004 , have been shown to display properties that are not found in their bulk form. Among these substances, there has been considerable interest on the study of black phosphorus, an allotrope of phosphorus. In contrast with graphene, black phosphorus is a semiconductor, and its high electronic mobility makes it a possible candidate for device applications. One important aspect of the electronic structure of black phosphorus, for instance, is the dependence of the gap on the number of layers. Experiments have shown that this property varies from ≈ 2.0 eV (for the monolayer) to ≈ 0.3 eV (for the bulk ), covering a frequency range not previously observed in other 2D materials. Recently, a series of calculations have obtained the band structure of black phosphorus, both from a first principles approaches, k · p methods, as well as tight-binding and continuum models. The results have shown that black phosphorus presents a large anisotropic effective masses and, in addition, that the gap itself can be modified by the application of an external bias. Most of these works have not considered the effects of edge termination and only considered single or bilayer black phosphorus, due to the increasing computational demands as the number of layers is increased. In this work, we propose boundary conditions based on sublattice symmetries for black phosphorus nanoribbons with zigzag and armchair edges using the continuum approach and show that our results for the energy spectra exhibit good agreement with those obtained by using the five-parameter tight-binding model. As a consequence, we demonstrate that the bands gaps for nanoribbons with di#erent terminations have different scaling laws. We also extend the previous proposed tight-binding and continuum approaches to consider black phosphorus #lms with arbitrary numbers of layers. We show that a system of N coupled black phosphorus layers can be approximately mapped into a system of N uncoupled single layers. Expressions for the low-energy electron and hole bands, as well as their effective masses are derived. This in turn permits a straightforward calculation of the Landau level spectrum of the system, as will be also discussed here. The combination of the methods developed here allows the study of general black phosphourus nanostructures, such as nanorings, quantum dot, hall bar and etc, in a way that is computationally cheap if compared to other approaches.
URI: http://www.repositorio.ufc.br/handle/riufc/34593
Appears in Collections:DFI - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2018_tese_djpsousa.pdf11,99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.