Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/16927
Tipo: | Dissertação |
Título: | Um sistema infinitário para a lógica de menor ponto fixo |
Título em inglês: | A infinitary system of the logic of least fixed-point |
Autor(es): | Arruda, Alexandre Matos |
Orientador: | Martins, Ana Teresa de Castro |
Coorientador: | Pereira, Luiz Carlos Pinheiro Dias |
Palavras-chave: | Ciência da computação;Lógica de menor ponto-fixo;Least fixed-point logic;Finite model theory;Proof theory;Infinitary natural deduction system;Teoria dos modelos finitos;Teoria da prova;Sistema de dedução natural infinitário |
Data do documento: | 2007 |
Citação: | ARRUDA, Alexandre Matos. Um sistema infinitário para a lógica de menor ponto fixo. 2007. 91 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Departamento de Computação, Fortaleza-CE, 2007. |
Resumo: | A noção de menor ponto-fixo de um operador é amplamente aplicada na ciência da computação como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensões da Lógica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lógica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados á expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterização descritiva de classes computacionais é uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos não é recursivamente enumerável, isto é, a completude falha sobre modelos finitos. Este resultado é baseado na hipótese de que qualquer sistema dedutivo é de natureza finita. Entretanto, nos podemos relaxar tal hipótese como foi feito no escopo da teoria da prova para aritmética. A teoria da prova tem raízes no programa de Hilbert. Conseqüências teóricas da noção de prova são, por exemplo, relacionadas a teoremas de normalização, consistência, decidibilidade, e resultados de complexidade. A teoria da prova para aritmética também é motivada pelos teoremas de incompletude de Gödel, cujo alvo foi fornecer um exemplo de um princípio matemático verdadeiro e significativo que não é derivável na aritmética de primeira-ordem. Um meio de apresentar esta prova é baseado na definição de um sistema de prova com uma regra infinitária, a w-rule, que estabiliza a consistência da aritmética de primeira-ordem através de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitário de prova para LFP que nos permitirá investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lógica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados já obtidos com FMT e também novos resultados do ponto de vista da teoria da prova. Além disso, iremos propor um procedimento de normalização com restrições para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais |
Abstract: | The notion of the least fixed-point of an operator is widely applied in computer science as, for instance, in the context of query languages for relational databases. Some extensions of FOL with _xed-point operators on finite structures, as the least fixed-point logic (LFP), were proposed to deal with problem problems related to the expressivity of FOL. LFP captures the complexity class PTIME over the class of _nite ordered structures. The descriptive characterization of computational classes is a central issue within _nite model theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that validity over finite models is not recursively enumerable, that is, completeness fails over finite models. This result is based on an underlying assumption that any deductive system is of finite nature. However, we can relax such assumption as done in the scope of proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof theoretical consequences are, for instance, related to normalization theorems, consistency, decidability, and complexity results. The proof theory for arithmetic is also motivated by Godel incompleteness theorems. It aims to o_er an example of a true mathematically meaningful principle not derivable in first-order arithmetic. One way of presenting this proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes the consistency of first-order arithmetic through a proof-theoretical perspective. Motivated by this proof, here we will propose an in_nitary proof system for LFP that will allow us to investigate proof theoretical properties. With such in_nitary deductive system, we aim to present a proof theory for a logic traditionally defined within the scope of FMT. It opens up an alternative way of proving results already obtained within FMT and also new results through a proof theoretical perspective. Moreover, we will propose a normalization procedure with some restrictions on the rules, such this deductive system can be used in a theorem prover to compute queries on relational databases. |
URI: | http://www.repositorio.ufc.br/handle/riufc/16927 |
Aparece nas coleções: | DCOMP - Dissertações defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2007_dis_amarruda.pdf | 417,86 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.