Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/12932
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorDantas Neto, Silvrano Adonias-
dc.contributor.authorAraújo, Carla Beatriz Costa de-
dc.date.accessioned2015-06-24T19:02:43Z-
dc.date.available2015-06-24T19:02:43Z-
dc.date.issued2015-
dc.identifier.citationARAÚJO, C. B. C. Aplicação das redes neurais artificiais do tipo perceptron na estimativa de recalques em estacas. 2015. 203 f. Dissertação (Mestrado em Engenharia Civil: Geotecnia)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/12932-
dc.description.abstractUse of artificial neural networks (ANN) in the estimation of settlements in foundations deep has proven an effective tool. The work of Amancio (2013) and Silveira (2014), the use of RNA showed good results for predicting settlements in continuous stakes propellers, metal piles driven and bored piles. However, some modeled stakes had far behavior of real results, where modeling results indicate sharp increases in stiffness soil-cutting system. In this research, it developed a model with a neural network of the multilayer perceptron to improve the performance of the models Amâncio (2013) and Silveira (2014). To development work initially polls results of analyzes were made Percussion SPT and static load tests of 199 stakes used at work presented by Silveira (2014), making up an assessment of the consistency of the information, in order to have a more heterogeneous and the representative assembly. After conducting changes, has come up with a set with 141 stakes, totaling 1,320 examples of the type entrance exit. Were defined as model input variables: the type of pile, the length of the pile, the pile diameter, the number of representative values ​​when NSPT Over stake stem (called NF), the NSPT on the edge of the pile, depth of the layer the influence of load relative to the cutting edge, the factor representative of the soil layers clay, the representative factor of silty soil layers, the representative factor of the layers sandy soil and the applied load. Four different ways of calculation have been studied in NF input variable, which are: sum, average, weighted sum and weighted average. With input variables presented were worked models where the output variable was the repression of deep foundation. The modeling of RNA was made using the QNET program 2000 and were carried out training and validation of different architectures. The model had better performance showed correlation coefficient between the actual settlements and settlements modeled in the training of 0.99 and 0.98 in the validation. The results proved to be better than those of Amancio (2013) and Silveira (2014), which in the validation phase, They showed correlations of 0.89 and 0.94 respectively. The final model of this work has an architecture comprised of 10 nodes in the input layer, 34 neurons distributed throughout four hidden layers, and one neuron in the output layer (A: 10-15-9-7-3-1) using to calculate the average number of NSPT representative values ​​along the cutting shaftpt_BR
dc.language.isopt_BRpt_BR
dc.subjectGeotecniapt_BR
dc.subjectFundaçõespt_BR
dc.subjectRedes neuraispt_BR
dc.titleAplicação das redes neurais artificiais do tipo perceptron na estimativa de recalques em estacaspt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrA utilização das redes neurais artificiais (RNA) na estimativa de recalques em fundações profundas é comprovadamente uma ferramenta eficiente. Nos trabalhos de Amâncio (2013) e Silveira (2014), o emprego das RNA apresentou bons resultados para a previsão de recalques em estacas hélices contínuas, estacas cravadas metálicas e estacas escavadas. Porém, algumas estacas modeladas apresentaram comportamento muito distante dos resultados reais, onde os resultados da modelagem indicaram aumentos bruscos na rigidez do sistema solo-estaca. Nesta pesquisa, foi desenvolvido um modelo com uma rede neural do tipo perceptron multicamadas de forma a melhorar o desempenho dos modelos de Amâncio (2013) e Silveira (2014). Para desenvolvimento do trabalho, inicialmente foram feitas análises dos resultados de sondagens à percussão do tipo SPT e provas de carga estáticas das 199 estacas utilizadas no trabalho apresentado por Silveira (2014), fazendo-se uma avaliação da consistência das informações, com o objetivo de ter um conjunto mais heterogêneo e representativo. Após a realização de alterações, chegou-se a um conjunto com 141 estacas, totalizando 1.320 exemplos do tipo entrada-saída. Foram definidas como variáveis de entrada do modelo: o tipo de estaca, o comprimento da estaca, o diâmetro da estaca, o número representativo dos valores de NSPT ao longo do fuste da estaca (denominada NF), o NSPT na ponta da estaca, profundidade da camada de influência da carga em relação a ponta da estaca, o fator representativo das camadas de solo argiloso, o fator representativo das camadas de solo siltoso, o fator representativo das camadas de solo arenoso e a carga aplicada. Foram estudadas quatro diferentes formas de cálculo da variável de entrada NF, sendo estas: soma, média, soma ponderada e média ponderada. Com as variáveis de entrada apresentadas foram trabalhados modelos onde a variável de saída fosse o recalque da fundação profunda. A modelagem das RNA foi feita utilizando o programa QNET 2000, e foram realizados o treinamento e a validação de diferentes arquiteturas. O modelo que teve melhor desempenho apresentou coeficiente de correlação entre os recalques reais e os recalques modelados no treinamento de 0,99 e na validação de 0,98. Os resultados obtidos mostraram-se melhores que os de Amâncio (2013) e Silveira (2014), que na fase de validação, apresentaram correlações de 0,89 e 0,94 respectivamente. O modelo final deste trabalho possui uma arquitetura formada por 10 nós na camada de entrada, 34 neurônios distribuídos ao longo de quatro camadas ocultas e um neurônio na camada de saída (A:10-15-9-7-3-1), utilizando a média para cálculo do número representativo dos valores de NSPT ao longo do fuste da estacapt_BR
dc.title.enApplication of artificial neural networks the perceptron in the estimation of settlements in stakespt_BR
Aparece nas coleções:DEHA - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_dis_cbcaraujo.pdf11,44 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.