Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/12669
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Farias, Gil de Aquino | - |
dc.contributor.author | Silva, Jusciane da Costa e | - |
dc.date.accessioned | 2015-06-08T19:07:00Z | - |
dc.date.available | 2015-06-08T19:07:00Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | SILVA, J. C. Confinamento quântico em hetero-estruturas semicondutoras de baixa dimensionalidade. 2008. 161 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2008. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/12669 | - |
dc.description.abstract | Semiconductor materials are responsible for large development in the electronic industry and appearence of new technologies. The concept of heterostructure gave a large impulse to the solid-state physics. It is impossible to imagine modern solid-state physics without semiconductor heterostructures. The physics of semiconductors is nowadays concentrated in the study of the so-called low dimension systems: quantum wells, wires, dots and rings, which are the subject of research of two-thirds of the semiconductors physics community. In this work, we investigate the confinement of carriers and excitons in low dimensional heterostructure; quantum well, dots and ring. Starting with the study of the excitonic properties of Si/Si1−xGex, we consider two possibilities for the band alignment: type-I, where charge carries, electrons and holes, are confined in the same material, and type-II, where these carriers are spatially separated, in different materials. We use an Hamiltonian that, in effective mass approximation, takes into account the existence of non-abrupt interfaces in the system. In type-I, we observed that the exciton energy is increasing when considering applied electric field. In the type-II systems, application of magnetic field affect more the electron confinement than the hole. We investigate some phenomena in quantum rings, such as impurities, geometric effects, roughness and double rings. We calculate the energy levels of the electrons in quantum rings considering a perpendicular magnetic field, taking into account a realistic model, which consists of rings with finite barrier and potential, not limited to small perturbation. When considering the presence of impurity in the quantum ring, there is a breaking of symmetry in the system and, consequently, Aharanov-Bohm (AB) fluctuations are vanish. However, for two impurities, fluctuations are AB recovered if z1 = z2, in the case of positive impurities and for negative impurities fluctuations are recovered independent of positions of impurities. The existence of interfaces roughness is responsible for a considerable shift in the energy carriers. Moreover, the degeneration points of transition in the angular moment AB are raised when the rough surfaces are considered, and in special cases, oscillations in fundamental state are suppressed. Theoretical study of carriers energy in type-I and type-II quantum dots is performed, and also in double quantum dots InGaAs/GaAs, analyzing the effect of distance between the dots, considering two types of coupling: lateral and vertical. The Schödinger equation in three dimensions, in the effective mass approximation, is solved for electrons and holes using a time evolution method of the wave function. We have observed that the curves of Stark shift from binding energy and total exciton in Si/Si0.85Ge0.15 type-I quantum dots are asymmetric, because of the existence of an intrinsic electric dipole in these systems. However, when considering the effect of the magnetic field parallel to the plane, Stark shift becomes more symmetric. For double dots, we see that electron confinement energies in coupled laterally quantum dots, when considering the same radius for both dots degenerate Abstract x as the distance between the dots increases. However, when the radii of the dots are different, their energy are not significantly changed. In the case of vertical coupling, the behavior is similar to the dots side by side. For radii equal in both quantum dots, the pair of states becomes degenerated as distance between the dots increases, which is not the case when considering of dots with different radii. | - |
dc.language.iso | pt_BR | pt_BR |
dc.subject | Semicondutores | pt_BR |
dc.subject | Indústrias eletrônicas | pt_BR |
dc.subject | Teoria dos excitons | pt_BR |
dc.title | Confinamento quântico em hetero-estruturas semicondutoras de baixa dimensionalidade | pt_BR |
dc.type | Tese | pt_BR |
dc.contributor.co-advisor | Freire, José Alexander de King | - |
dc.description.abstract-ptbr | Os materiais semicondutores são responsáveis pelo grande desenvolvimento na indústria eletrônica e surgimento de novas tecnologias. O conceito de hetero-estrutura deu um grande impulso à física do estado sólido. É impossível imaginar a moderna física do estado sólido sem hetero-estruturas semicondutoras. A física de semicondutores está atualmente concentrada no estudo dos chamados sistemas de dimensões reduzidas: poços, fios, pontos e anéis quânticos, assunto de pesquisa de dois terços da comunidade de física de semicondutores. Neste trabalho, investigaremos o confinamento dos portadores e dos excitons em hetero-estruturas de baixas dimensão; poço, ponto e anel quântico. Iniciaremos com o estudo das propriedades excitônicas de poços quânticos Si/Si_{1-x}Ge_x, considerando duas possibilidades para o alinhamento de banda: tipo-I, onde os portadores de cargas, elétron e buraco, estão confinados no mesmo material, e tipo-II, onde os portadores estão espacialmente localizados em materiais diferentes. Usaremos um Hamiltoniano que, na aproximação da massa efetiva, leva em conta a existência de interfaces não abruptas entre os materiais que compõe o sistema. Nos sistemas tipo-I, observamos que a energia do exciton sofre um aumento quando consideramos campos elétricos aplicados. Já em sistemas tipo-II, o campo magnético afeta bem mais o confinamento do elétron do que o do buraco. Investigamos alguns fenômenos nos anéis quânticos, como: impurezas, efeitos geométricos, rugosidade e anéis duplos. Calculamos os níveis de energia do elétron em anéis quânticos considerando um campo magnético perpendicular, levando em conta um modelo realístico, que consiste em anéis com barreiras e potenciais finitos, não limitado a pequenas pertubações. Quando consideramos a presença de uma impureza no anel quântico, há uma quebra de simetria no sistema e consequetemente as oscilações Aharanov-Bohm (AB) são anuladas. Entretanto, para duas impurezas, as oscilações AB são recuperadas se as distâncias entre as impurezas e o plano forem iguais, no caso das impurezas positivas e para impurezas negativas as oscilações são recuperadas independente das posições das impurezas. A existência de interfaces rugosas é responsável por um considerável deslocamento nas energias dos portadores. Além disso, a degenerescência nos pontos de transição do momento angular nas oscilações AB é levantada quando consideramos superfícies rugosas, em casos especiais, as oscilações AB nas energias do estado fundamental pode ser anuladas. Fizemos também um estudo teórico da energia dos portadores em pontos quânticos tipo-I e tipo-II, além de um estudo em pontos quânticos duplos $InGaAs/GaAs$ analisando o efeito de afastamento entre os pontos e considerando dois tipos de acoplamento: lateral e vertical. A equação de Schodinger em três dimensões, na aproximação da massa efetiva, é resolvida para elétrons e buracos a partir de um método de evolução temporal da função de onda. Observamos que as curvas do Stark shift das energias de ligação e total do exciton em pontos quânticos Si/Si_{0.85}Ge_{0.15} tipo-I são assimétricas devido à existência de um dipolo elétrico intrínseco nestes sistemas. No entanto, quando consideramos o efeito de um campo magnético paralelo ao plano, o Stark shift torna-se mais simétrico. No caso dos pontos duplos, vimos que a energia de confinamento do elétron em pontos quânticos acoplados lateralmente, quando consideramos os raios dos pontos iguais, degeneram à medida que a distância entre os pontos aumenta. Entretanto, quando os raios dos pontos são diferentes, essas energias não têm mudanças significativas. Para o caso do acoplamento vertical, o comportamento é semelhante ao dos pontos lado a lado: Para raios iguais em ambos os pontos quânticos, os pares de estados tornam-se degenerados à medida que a distância entre os pontos aumenta, o que não acontece quando consideramos o caso de pontos com raios diferentes. | pt_BR |
Aparece nas coleções: | DFI - Teses defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2008_tese_jcsilva.pdf | 12,39 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.