Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/1170
Tipo: Tese
Título: Sobre a geometria de imersões isométricas em variedades de Lorentz conformemente estacionárias
Título em inglês: On the geometry of varieties of isometric immersions in Lorents stationary conformally
Autor(es): Velásquez, Marco Antonio Lázaro
Orientador: Muniz Neto, Antônio Caminha
Coorientador: Lima, Henrique Fernandes de
Palavras-chave: Hipersuperfícies;Geometria diferencial
Data do documento: 2010
Citação: VÉLASQUEZ, Marco Antonio Lázaro.Sobre a geometria de imersões isométricas em variedades de Lorentz conformemente estacionárias. 2010. 64 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2010.
Resumo: Nesta tese estudamos vários aspectos da geometria de variedades de Lorentz conformemente estacionárias e, particularmente, de espaços generalizados de Robertson-Walker, sob a presença de um campo vetorial conforme fechado. Inicialmente, nós desenvolvemos um estudo sobre a r-estabilidade e a r-estabilidade forte de hipersuperfícies tipo-espaço fechadas em ambientes conformemente estacionários de curvatura seccional constante; mais precisamente,nós obtemos uma caracterização das hipersuperfícies r-estáveis pelo primeiro autovalor de um certo operador elíptico naturalmente associado á sua r-ésima curvatura, bem como classificamos as hipersuperfícies fortemente r-estáveis por meio de uma condição adequada sobre o fator conforme do campo conforme do ambiente. Em seguida, estabelecemos teoremas gerais tipo-Bernstein para hipersuperfícies tipo-espaço em variedades de Lorentz conformemente estacionárias, um dos quais não exige que a hipersuperfície possua curvatura média constante. Finalmente, estendemos para variedades de Lorentz conformemente estacionárias um resultado de J. Simons sobre a minimalidade de certos cones em espaços Euclidianos, e aplicamos este resultado para construir subvariedades mínimas completas e não-compactas no espaço de de Sitter e no espaço anti-de Sitter.
Abstract: In this thesis we study several aspects of the geometry of conformally stationary Lorentz manifolds and, more particularly, of generalized Robertson-Walker spaces, under the presence of a closed conformal vector field. We initiate by focusing our study on the r-stability and on the strong r-stability of closed spacelike hypersurfaces of conformally stationary ambient spaces of constant sectional curvature; more precisely, we obtain a characterization of the r-stable ones by means of the first eigenvalue of a suitable elliptic operator naturally associated to its r-th mean curvature, as well classify the strongly r-stable ones by means of an appropriate condition on the conformal factor of the conformal vector field on the ambient space. Following,we establish general Bernstein-type theorems for spacelike hypersurfaces of conformally stationary Lorentz manifolds, one of which does not require the hypersurface to be of constant mean curvature. We end by extending, to conformally stationary Lorentz manifolds, a result of J. Simons on the minimality of certain cones in Euclidean spaces, and apply this result to build complete, non-compact minimal submanifolds in the de Sitter space and in the anti-de Sitter space.
URI: http://www.repositorio.ufc.br/handle/riufc/1170
Aparece nas coleções:DMAT - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2010_tese_malvelasquez.pdf373,63 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.