Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/10851
Type: Tese
Title: Detecção e segmentação de estruturas em imagens médicas de retina
Title in English: Detection and segmentation of structures in medical retinal images
Authors: Veras, Rodrigo de Melo Souza
Advisor: Medeiros, Fátima Nelsizeuma Sombra de
Keywords: Teleinformática;Olho - Doenças - Tratamento
Issue Date: 2014
Citation: VERAS. R. M. S. Detecção e segmentação de estruturas em imagens médicas de retina. 2014. 71 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2014.
Abstract in Brazilian Portuguese: Imagens de fundo de olho constituem um valioso recurso para o diagnóstico médico, pois muitas vezes apresentam indicações de doenças oftálmicas como as da retina e até mesmo doenças sistêmicas como diabetes, hipertensão e arteriosclerose. Esta tese trata de algoritmos de detecção de estruturas como a fóvea, mácula, exsudatos e disco óptico (DO) em imagens de retina. Em se tratando de algoritmos de detecção da fóvea em imagens coloridas de retina, propomos um algoritmo assim como conjunto de regras para avaliação dos mesmos. A detecção automática desta estrutura anatômica é um pré-requisito para o diagnóstico auxiliado por computador de várias doenças da retina, como a degeneração macular. Entretanto, as pequenas dimensões e baixo contraste da fóvea dificultam a execução desta tarefa de detecção. O algoritmo proposto determina a região de interesse levando em consideração as coordenadas do DO e o fato da fóvea ser uma área escura, homogênea e sem presença de vasos sanguíneos. Em seguida, o método realiza a etapa de segmentação dos vasos e pesquisa pela janela com menor média de intensidade de cor na imagem resultante da fusão entre os canais vermelho e verde. Os testes do algoritmo de detecção da fóvea foram realizados em três bases de imagens públicas de referência ARIA, DRIVE e MESSIDOR. Neste trabalho, propomos ainda um algoritmo de detecção de exsudatos em imagens de retina. A metodologia proposta combina agrupamento nebuloso e técnicas de morfologia matemática. Os resultados confirmam a melhoria no desempenho do método de detecção quando comparado aos métodos disponíveis na literatura. Portanto, comparamos os resultados de seis algoritmos automáticos de detecção do DO disponíveis na literatura, utilizando dados de referência das bases públicas ARIA, STARE, DRIVE e MESSIDOR. O objetivo era determinar a robustez dos mesmos em detectar o DO em imagens de retina saudáveis e com a presença de patologias. Observamos que em geral os métodos de detecção de DO que apresentam melhor desempenho o fazem em bases menos desafiadoras como as duas últimas, ou seja, eles alcançam as maiores taxas de acerto.
Abstract: Fundus images are valuable resource in diagnosis because they often present indications about retinal, ophthalmic, and even systemic diseases such as diabetes, hypertension, and arteriosclerosis. This thesis focuses on algorithms to detect fovea, exudates and optic disk (OD) in retina images. Regarding fovea detection algorithms in colored retina images, we propose an algorithm and furthermore a set of rules to assess them. Automatic detection of this anatomical structure is a prerequisite for computer-aided diagnosis of several retinal diseases, such as macular degeneration. However, the small dimension and weak contrast of the fovea area on retina images make difficult this task detection, directly. The proposed algorithm determines a region of interest taking into account OD coordinates and the fact that the fovea is a homogeneous dark area without blood vessels. Then, the method performs the vessel segmentation step and searches for the lowest mean color intensity window in the image that results from the fusion between the red and green channels. Tests were carried out on three public benchmark databases. In addition, this thesis proposes an algorithm for exudate detection in retina images. The proposed methodology combines fuzzy clustering and mathematical morphology techniques. The results confirm the performance improvement provided by the proposed methodology, when comparing it to other methods available in the literature. In this work, we compare the results of six different automatic algorithms for OD detection, using the public benchmark image database named ARIA, STARE, DRIVE and MESSIDOR. We aimed to test the robustness of the algorithms in detecting the OD in healthy and pathological retina images. In general, we observed that these methods performed better in less challenging databases as the two last ones, i.e. they achieved the highest success rates in DRIVE and MESSIDOR.
URI: http://www.repositorio.ufc.br/handle/riufc/10851
Appears in Collections:DETE - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2014_tese_rmsveras.pdf14,55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.